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Basic Network Abstraction

 A process can create “endpoints” 
 Each endpoint has a unique address 
 Processes can receive messages on 
endpoints 
 Processes can send messages to 
endpoints 
 A message is a byte array
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Some issues…

 How are addresses assigned? 
 How does a message to some address find its way to 

the corresponding endpoint? 
 Can one broadcast messages? 
■ Can multiple endpoints share the same address? 
 Can messages 
■ be arbitrarily large? 
■ be lost or garbled? 
■ be re-ordered? 
 What do processes “stick” in these messages?
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Network “protocol”

 An agreement between processes about 
the content of messages 
■ Syntax: Layout of bits, bytes, fields, etc. 

⬥message format 
■ Semantics: What they mean 

Examples: 
■ HTTP “get” requests and responses 

⬥HTML is part of the format 
■ Excuse me, please, thank you, etc. in real life
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Network Layering

 The network abstraction is usually layered 
■ Each layer provides a service to layers above; relies on services from 

layers below 

Example: 

Application Layer HTTP/FTP/DNS; exchanges messages

Transport Layer Transports messages; TCP (connection oriented)/
UDP; exchanges segments

Network Layer Transports segments; IP; exchanges datagrams

Link Layer Transports datagrams; Ethernet/WiFi; exchanges 
frames

Physical Layer Trasports frames;wires, signal encoding, wireless; 
exchanges bits
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Why Layering?

Modularity 
■ Allows to identify relationship between distinct 

pieces of complex system 
■ Eases maintenance and updating of system 

⬥change of implementation of layer’s service 
transparent to rest of system 

Are there costs to modularity?
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Link Layer: 
Local Area Networking (LAN) and Ethernet
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Where is the Link Layer implemented?

In each host, through one 
or more NICs 
■ Network Interface Cards 

⬥ Ethernet, 802.11, etc. 

Attaches into host’s 
system buses 
Combination of hardware, 

software, firmware
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Addressing

Each NIC has a MAC address 
■ Media Access Control address 
■ Unique! 
■ 6 bytes long 
■ Ethernet example: b8:e3:56:15:6a:72 
■ Address space managed by IEEE; first 24 bits identify 

manufacturer 
■ Does not change if the NIC moves 

⬥ Not true of IP address!
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Multiple access protocols

❖ single shared broadcast channel  

❖ two or more simultaneous transmissions by nodes: interference  

▪ collision if node receives two or more signals at the 
same time 

multiple access protocol 
❖ distributed algorithm that determines how nodes share channel, 

i.e., determine when node can transmit 

❖ communication about channel sharing must use channel itself!  
▪ no out-of-band channel for coordination
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An ideal multiple access protocol

given: broadcast channel of rate R bps 

desiderata: 
1. node that wants to transmit, can send at rate R. 
2. when M nodes want to transmit, each can send at 

average rate R/M 
3. fully decentralized: 

⬥no special node to coordinate transmissions 
⬥no synchronization of clocks, slots 

4. simple

12



MAC protocols: taxonomy
three broad classes: 

channel partitioning 
■ divide channel into smaller “pieces” (time slots, frequency, code) 
■ allocate piece to node for exclusive use 

random access 
■ channel not divided, allow collisions 
■ “recover” from collisions 

“taking turns” 
■ nodes take turns, but nodes with more to send can take longer turns
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Channel partitioning MAC protocols: TDMA
TDMA: time division multiple access  
❖ access to channel in "rounds"  
❖ each station gets fixed length slot (length = 

pkt trans time) in each round  
❖ unused slots go idle  
❖ example: 6-station LAN, 1,3,4 have frames, 

slots 2,5,6 idle 

1 3 4 1 3 4

6-slot 
frame

6-slot 
frame
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FDMA: frequency division multiple access  
❖ channel spectrum divided into frequency bands 

❖ each station assigned fixed frequency band 

❖ unused transmission time in frequency bands go idle  

❖ example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 
idle 
fre

qu
en

cy
 b

an
ds time

FDM cable

Channel partitioning MAC protocols: FDMA
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“Taking turns” MAC protocols
channel partitioning MAC protocols: 

■ share channel efficiently and fairly at high load 
■ inefficient at low load: delay in channel access, 1/N 

bandwidth allocated even if only 1 active node!  

random access MAC protocols 
■ low load: single node can fully utilize channel 
■ high load: collision overhead 

“taking turns” protocols 
look for best of both worlds!
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token passing: 
❖ control token passed 

from one node to next 
sequentially. 

❖ token message 
❖ concerns: 

▪ token overhead  
▪ latency 
▪ single point of failure 

(token) 
 

T

data

(nothing 
to send)

T

“Taking turns” MAC protocols
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Random access protocols
when node has packet to send 
■ transmit at full channel data rate R. 
■ no a priori coordination among nodes 
multiple transmitting nodes ➜ “collision”, 
random access MAC protocol specifies:  
■ how to detect collisions 
■ how to recover from collisions (e.g., via delayed 

retransmissions) 
examples of random access MAC protocols: 
■ slotted ALOHA, ALOHA 
■ CSMA, CSMA/CD, CSMA/CA
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Example: Ethernet

1976, Metcalfe & Boggs at Xerox 
⬥ Later at 3COM 

Based on the Aloha network in Hawaii 
Named after the “luminiferous ether” 
Centered around a broadcast bus 
Simple link-level protocol, scales pretty well 
Tremendously successful 
Still in widespread use 

⬥ many orders of magnitude increase in bandwidth since early versions
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“CSMA/CD”

Carrier sense 
■ Listen before you speak 

Multiple access 
■ Multiple hosts can access the network 

Collision detect 
■ Detect and respond to cases where two hosts 

collide
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CSMA collisions
collisions can still 
occur: propagation 
delay means  two nodes 
may not hear each 
other’s transmission 

collision: entire packet 
transmission time 
wasted 
■ distance & propagation 

delay play role in in 
determining collision 
probability

spatial layout of nodes 
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CSMA/CD (collision detection)
CSMA/CD: carrier sensing, deferral as in CSMA 

▪ collisions detected within short time 
▪ colliding transmissions aborted, reducing channel 

wastage  
❖ collision detection:  

▪ easy in wired LANs: measure signal strengths, 
compare transmitted, received signals 

▪ difficult in wireless LANs: received signal strength 
overwhelmed by local transmission strength 
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CSMA/CD (collision detection)
spatial layout of nodes 
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Ethernet CSMA/CD algorithm

1. NIC receives datagram 
from network layer, creates 
frame 

2. If channel idle, starts frame 
transmission. If channel 
busy, wait until channel idle, 
then transmit. 

3. If entire frame transmitted 
without detecting another 
transmission, done! 

4. If another transmission 
detected, abort and send 
jam signal 

5. After aborting, NIC enters 
binary (exponential) backoff:  
■ after mth collision, choose 

K at random from {0,1,2, 
…, 2m-1}. Wait K·512 bit 
times, return to Step 2 

■ longer backoff interval 
with more collisions 
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MAC addresses
32-bit IP address:  
■ network-layer address for interface 
■ used for layer 3 (network layer) forwarding (coming up) 

MAC (or LAN or physical or Ethernet) address:  
■ function: used ‘locally” to get frame from one interface to another 

physically-connected interface (same network, in IP-addressing 
sense) 

■ 48 bit MAC address (for most LANs) burned in NIC ROM, 
also sometimes software settable 

■ e.g.: 1A-2F-BB-76-09-AD
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MAC addresses on a LAN
each adapter on LAN has unique MAC address

adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

   LAN 
(wired or 
wireless)
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ARP: address resolution protocol
ARP table: each IP node (host, 
router) on LAN has table 

▪ IP/MAC address 
mappings for some LAN 
nodes: 

          < IP address; MAC address; TTL> 

▪ TTL (Time To Live): time 
after which address 
mapping will be forgotten 
(typically 20 min)

Question: how to determine 
interface’s MAC address, 
knowing its IP address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53
   LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88
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ARP protocol: same LAN
A wants to send datagram to B 
■ B’s MAC address not in A’s ARP 

table.
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ARP protocol: same LAN
A wants to send datagram to B 
■ B’s MAC address not in A’s ARP 

table. 
A broadcasts ARP query packet, 
containing B's IP address  
■ dest MAC address = FF-FF-FF-FF-

FF-FF 
■ all nodes on LAN receive ARP 

query  
B receives ARP packet, replies 
to A with its (B's) MAC address 
■ frame sent to A’s MAC address 

(unicast)

A caches (saves) IP-to-
MAC address pair in its 
ARP table until information 
becomes old (times out)  
■ soft state: goes away unless 

refreshed 

ARP is “plug-and-play”: 
■ nodes create their ARP tables 

without intervention from net 
administrator
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walkthrough: send datagram from A to B via R 
■  focus on addressing – at IP (datagram) and MAC layer (frame) 
■  assume A knows B’s IP address 
■  assume A knows IP address of first hop router, R  
■  assume A knows R’s MAC address (how?)

Addressing: routing to another LAN

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B
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R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP 
Eth 
Phy

IP src: 111.111.111.111 
   IP dest: 222.222.222.222

❖ A creates IP datagram with IP source A, destination B 
❖ A creates link-layer frame with R's MAC address as dest, frame 

contains A-to-B IP datagram

MAC src: 74-29-9C-E8-FF-55 
   MAC dest: E6-E9-00-17-BB-4B
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R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP 
Eth 
Phy

❖ frame sent from A to R

IP 
Eth 
Phy

❖ frame received at R, datagram removed, passed up to IP

MAC src: 74-29-9C-E8-FF-55 
   MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111 
   IP dest: 222.222.222.222

IP src: 111.111.111.111 
   IP dest: 222.222.222.222
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R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP src: 111.111.111.111 
   IP dest: 222.222.222.222

❖ R forwards datagram with IP source A, destination B 
❖ R creates link-layer frame with B's MAC address as dest, frame 

contains A-to-B IP datagram
MAC src: 1A-23-F9-CD-06-9B 
  MAC dest: 49-BD-D2-C7-56-2A 

IP 
Eth 
Phy

IP 
Eth 
Phy

Addressing: routing to another LAN
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R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

❖ R forwards datagram with IP source A, destination B 
❖ R creates link-layer frame with B's MAC address as dest, frame 

contains A-to-B IP datagram

IP src: 111.111.111.111 
   IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B 
  MAC dest: 49-BD-D2-C7-56-2A 

IP 
Eth 
Phy

IP 
Eth 
Phy

Addressing: routing to another LAN
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R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

❖ R forwards datagram with IP source A, destination B 
❖ R creates link-layer frame with B's MAC address as dest, frame 

contains A-to-B IP datagram
IP src: 111.111.111.111 
   IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B 
  MAC dest: 49-BD-D2-C7-56-2A 

IP 
Eth 
Phy

Addressing: routing to another LAN
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Ethernet
“dominant” wired LAN technology:  

cheap $20 for NIC 
first widely used LAN technology 
simpler, cheaper than token LANs and ATM 
kept up with speed race: 10 Mbps – 10 Gbps 

Metcalfe’s 
Ethernet sketch
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Ethernet: physical topology
bus: popular through mid 90s 
■ all nodes in same collision domain 
star: prevails today 
■ active switch in center 
■ each “spoke” runs a (separate) Ethernet protocol (nodes 

do not collide with each other)

switch

bus: coaxial cable
star
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Ethernet frame structure
sending adapter encapsulates IP datagram (or other 

network layer protocol packet) in Ethernet frame 

preamble:  
❖ 7 bytes with pattern 10101010 followed by one 

byte with pattern 10101011 
❖  used to synchronize receiver, sender clock rates

dest. 
address

source 
address

data 
(payload)preamble

type

CRC
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Ethernet frame structure (more)
❖ addresses: 6 byte source, destination MAC addresses 

▪ if adapter receives frame with matching destination 
address, or with broadcast address), it passes data 
in frame to network layer protocol 

▪ otherwise, adapter discards frame 
❖ type: indicates higher layer protocol (mostly IP but  

others possible, e.g., Novell IPX, AppleTalk) 
❖ CRC: cyclic redundancy check at receiver (basically, a  

hash of the frame) 
▪ error detected: frame is dropped

dest. 
address

source 
address

data 
(payload) CRCpreamble

type 46 to 1500 bytes
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Link Layer 40

Ethernet: unreliable, connectionless
connectionless: no handshaking between sending and 

receiving NICs  
unreliable: receiving NIC doesnt send acks or nacks to 

sending NIC 
■ data in dropped frames recovered only if higher 

network layer ensures reliability (e.g., TCP), 
otherwise dropped data lost 

Ethernet’s MAC protocol: CSMA/CD wth binary backoff



Ethernet Problems
The endpoints are trusted to follow the 
collision-detect and retransmit protocol 

⬥ Certification process tries to assure compliance 
⬥ Not everyone always backs off exponentially 

Hosts are trusted to only listen to packets 
destined for them 

⬥ But the data is available for all to see 
■ All packets are broadcast on the wire 
■ Can place Ethernet card in promiscuous mode and liste
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Ethernet switch
link-layer device: takes an active role 
■ store, forward Ethernet frames 
■ examine incoming frame’s MAC address, 

selectively forward  frame to one-or-more 
outgoing links when frame is to be forwarded on 
segment, uses CSMA/CD to access segment 

transparent 
■ hosts are unaware of presence of switches 
plug-and-play, self-learning 
■ switches do not need to be configured
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Switch: multiple simultaneous transmissions
hosts have dedicated, direct 
connection to switch 
switches buffer packets 
Ethernet protocol used on each 
incoming link, but no collisions; 
full duplex 
■ each link is its own collision 

domain 
switching: A-to-A’ and B-to-B’ can 
transmit simultaneously, without 
collisions switch with six interfaces 

(1,2,3,4,5,6)  

A

A’

B

B’ C

C’

1 2

345

6
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Switch forwarding table
Q: how does switch know A’ 
reachable via interface 4, B’ 
reachable via interface 5?

switch with six interfaces 
(1,2,3,4,5,6)  

A

A’

B

B’ C

C’

1 2

345

6❖ A:  each switch has a switch 
table, each entry: 
▪ (MAC address of host, interface 

to reach host, time stamp) 
▪ a routing table!

Q: how are entries created, 
maintained in switch table? 
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A

A’

B

B’ C

C’

1 2

345

6

Switch: self-learning
switch learns which hosts can 
be reached through which 
interfaces 
■ when frame received, 

switch “learns”  
location of sender: 
incoming LAN segment 

■ records sender/
location pair in switch 
table

A A’

Source: A
Dest: A’

MAC addr   interface    TTL

Switch table  
(initially empty)

A 1 60
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A

A’

B

B’ C

C’

1 2

345

6

Self-learning, forwarding: example
A A’

Source: A
Dest: A’

MAC addr   interface    TTL

switch table  
(initially empty)

A 1 60

A A’A A’A A’A A’A A’

frame destination, A’, 
locaton unknown: flood

A’ A

❖ destination A location 

known:

A’ 4 60

            selectively send  
on just one link
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Switch: frame filtering/forwarding
when  frame received at switch:  

1. record incoming link, MAC address of sending host 
2. index switch table using MAC destination address 
3. if entry found for destination 

  then { 
     if destination on LAN segment from which frame arrived 

       then drop frame 
           else forward frame on interface indicated by entry 
       }    
      else flood  /* forward on all interfaces except arriving 
                          interface */ 
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Link Layer 48

Interconnecting switches

❖ switches can be connected together

Q: sending from A to G - how does S1 know to 
forward frame destined to F via S4 and S3? 
❖ A: self learning! (works exactly the same as in 

single-switch case!)

A
B

S1

C D
E

F
S2

S4

S3

H
I

G



Lessons for LAN design
Best-effort delivery simplifies network design 
A simple, distributed protocol can tolerate failures 
and be easy to administer
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Network Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer
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Network Layer
❖  There are lots of Local Area Networks 

❖ each with their own 
❖ address format and allocation scheme 
❖ packet format 
❖ LAN-level protocols, reliability guarantees  

❖  Wouldn’t it be nice to tie them all together? 
❖ Nodes with multiple NICs can provide the glue! 
❖ Standardize address and packet formats 

❖ This gives rise to an “Internetwork” 
❖ aka WAN (wide-area network)
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Internetworking Origins
Expensive supercomputers scattered throughout US 
Researchers scattered differently throughout the US 
Needed a way to connect researchers to expensive 
machinery
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Internetworking Origins
Department of Defense initiated studies on how to 
build a resilient global network 

⬥ How do you coordinate a nuclear attack ? 

Interoperability and dynamic routing are a must 
⬥ Along with a lot of other properties 

Result: Internet  (orig. ARPAnet) 
A complex system with simple components
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Internet Overview

Every host is assigned, and identified by, an IP address 
Messages are called datagrams 
■ the term packet is probably more common though… 

Each datagram contains a header that specifies the 
destination address 
The network routes datagrams from the source to the 
destination 

Design Decision: What kinds of properties should the 
network provide?
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The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Network

Data Link

Physical

Router1 Router2
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The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Network

Data Link

Physical

Router1 Router2
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Session Session
Connection management (RPC)

Format translation, serialization, encryption
(EBCDIC/ASCI)



Network Stack – quite literally
Each layer has its own header 
You can think of packet as a stack 
On send, each layer pushes a header onto the stack 
On receipt, each layer pops a header 
■ Headers often contain a “demultiplexer” like a port or 

protocol number to decide where to transfer control on 
the way up the stack.

57



End-to-End Argument
A kind of Occam’s Razor for Internet architecture 
Application-specific properties are best provided 
by the applications, not the network 

⬥ Guaranteed, or ordered, packet delivery, duplicate suppression, 
security, etc. 

The Internet performs the simplest packet routing 
and delivery service it can 

⬥ Packets are sent on a best-effort basis 
⬥ Higher-level applications do the rest
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1

23

0111

value in arriving 
packet’s header

routing algorithm

local forwarding table
header value output link

0100 
0101 
0111 
1001

3 
2 
2 
1

Two key network-layer functions
forwarding: move 
packets from router’s 
input to appropriate 
router output 

routing: determine 
route taken by packets 
from source to dest.  

■ routing algorithms

determines end-end 
path through network

determines local 
forwarding at router
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Network service model

Q: What service model for “channel” transporting 

datagrams from sender to receiver?

example services for 
individual datagrams: 

❖ guaranteed delivery 
❖ guaranteed delivery with 

less than 40 msec delay

example services for a flow 
of datagrams: 
in-order datagram delivery 
guaranteed minimum 
bandwidth to flow 
restrictions on changes in 
inter-packet spacing
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Network layer service models
Network 

Architecture 

Internet 

ATM 

ATM 

ATM 

ATM

Service 
Model 

best effort 

CBR 

VBR 

ABR 

UBR

Bandwidth 

none 

constant 
rate 
guaranteed 
rate 
guaranteed  
minimum 
none

Loss 

no 

yes 

yes 

no 

no

Order 

no 

yes 

yes 

yes 

yes

Timing 

no 

yes 

yes 

no 

no

Congestion 
feedback 

no (inferred 
via loss) 
no 
congestion 
no 
congestion 
yes 

no

Guarantees ?
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Connection, connection-less service
❖ datagram network provides network-layer 

connectionless service (IP) 
❖ virtual-circuit network provides network-layer 

connection service (ATM) 
❖ Much like a phone network 

❖ analogous to TCP/UDP connection-oriented / 
connectionless transport-layer services 
❖ Coming up…
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Datagram networks
no call setup at network layer 
routers: no state about end-to-end connections 
■ no network-level concept of “connection” 

packets forwarded using destination host address

1. send datagrams

application 
transport 
network 
data link 
physical

application 
transport 
network 
data link 
physical

2. receive datagrams
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1

23

Datagram forwarding  table

IP destination address in  
arriving packet’s header

routing algorithm

local forwarding table
dest address output  link
address-range 1 
address-range 2 
address-range 3 
address-range 4

3 
2 
2 
1

4 billion IP addresses, so 
rather than list individual 
destination address 
list range of addresses 
(aggregate table entries)

64



Destination Address Range 

11001000 00010111 00010000 00000000 
through                                  
11001000 00010111 00010111 11111111 
11001000 00010111 00011000 00000000 
through 
11001000 00010111 00011000 11111111   

11001000 00010111 00011001 00000000 
through 
11001000 00010111 00011111 11111111   

otherwise

Link Interface 

0 

1 

2 

3   

Q: but what happens if ranges don’t divide up so nicely? 

Datagram forwarding  table
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Longest prefix matching

Destination Address Range                         
11001000 00010111 00010*** *********  

11001000 00010111 00011000 ********* 

11001000 00010111 00011*** ********* 
otherwise             

DA: 11001000  00010111  00011000  10101010 

examples:
DA: 11001000  00010111  00010110  10100001 which interface?

which interface?

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix matching

Link interface 
0 
1 
2 
3
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ver length

32 bits

data  
(variable length, 
typically a TCP  

or UDP segment)

16-bit identifier
header 

 checksum
time to 

live

32 bit source IP address

head. 
len

type of 
service

flgs fragment 
 offset

upper 
 layer

32 bit destination IP address

options (if any)

IP datagram format
IP protocol version 

number
header length 

 (bytes)

upper layer protocol 
to deliver payload to

total datagram 
length (bytes)

“type” of data 
for 
fragmentation/ 
reassemblymax number 

remaining hops 
(decremented at  

each router)

e.g. timestamp, 
record route 
taken, specify 
list of routers  
to visit.

how much overhead? 
❖ 20 bytes of TCP 
❖ 20 bytes of IP 
❖ = 40 bytes + app 

layer overhead
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IP fragmentation, reassembly
network links have MTU 
(max.transfer size) - largest 
possible link-level frame 
■ different link types, 

different MTUs  
large IP datagram divided 
(“fragmented”) within net 
■ one datagram becomes 

several datagrams 
■ “reassembled” only at final 

destination 
■ IP header bits used to 

identify, order related 
fragments

fragmentation:  
in: one large datagram 
out: 3 smaller datagrams

reassembly

…

…
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ID 
=x

offset 
=0

fragflag 
=0

length 
=4000

ID 
=x

offset 
=0

fragflag 
=1

length 
=1500

ID 
=x

offset 
=185

fragflag 
=1

length 
=1500

ID 
=x

offset 
=370

fragflag 
=0

length 
=1040

one large datagram becomes 
several smaller datagrams

example: 
❖ 4000 byte datagram 
❖ MTU = 1500 bytes 

1480 bytes in  
data field

offset = 
1480/8 

IP fragmentation, reassembly

69



IP Addressing
Every (active) NIC has an IP address 

⬥ IPv4: 32-bit descriptor, e.g. 128.84.12.43 
⬥ IPv6: 128-bit descriptor (but only 64 bits “functional”) 
⬥ Will use IPv4 unless specified otherwise… 

Each Internet Service Provider (ISP) owns a set of 
IP addresses 
ISPs assign IP addresses to NICs 
An IP address is not an identifier: 

⬥ IP addresses can be re-used 
⬥ Same NIC may have different IP addresses over time
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Subnets
IP address:  
■subnet part - high order 
bits 

■host part - low order bits  

what’s a subnet ? 
■device interfaces with 
same “subnet part” of IP 
address 

■can physically reach each 
other without intervening 
router

network consisting of 3 subnets

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1
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how many?
223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

Subnets
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IP addressing: CIDR
CIDR: Classless InterDomain Routing 

▪ subnet portion of address of arbitrary length 
▪ address format: a.b.c.d/x, where x is # bits in 

subnet portion of address

11001000  00010111  00010000  00000000

subnet 
part

host 
part

200.23.16.0/23
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IP addresses: how to get one?

Q: How does a host get IP address? 

hard-coded by system admin in a file 
■ Windows: control-panel->network-

>configuration->tcp/ip->properties 
■ UNIX: /etc/rc.config 

DHCP: Dynamic Host Configuration Protocol: 
dynamically get address from as server 
■ “plug-and-play” 
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Addressing & DHCP

DHCP is used to discover IP addresses (and more) 
 DHCP = Dynamic Host Configuration Protocol

“I just got here. My 
physical address is 
1a:34:2c:9a:de:cc. 
What’s my IP?”

128.84.96.90 
DHCP Server

???

128.84.96.91

“Your IP is 128.84.96.89 
for the next 24 hours”
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NAT: network address translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network 
(e.g., home network) 

10.0.0/24

rest of 
Internet

datagrams with source or  
destination in this network 
have 10.0.0/24 address for  
source, destination (as usual)

all datagrams leaving local 
network have same single 

source NAT IP address: 
138.76.29.7,different source 

port numbers
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motivation: local network uses just one IP address 
as far as outside world is concerned: 
■ range of addresses not needed from ISP:  just one IP 

address for all devices 
■ can change addresses of devices in local network 

without notifying outside world 
■ can change ISP without changing addresses of devices 

in local network 
■ devices inside local net not explicitly addressable, 

visible by outside world (a security plus)

NAT: network address translation
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   implementation: NAT router must:  
■ outgoing datagrams: replace (source IP address, port #) of 

every outgoing datagram to (NAT IP address, new port #) 
. . . remote clients/servers will respond using (NAT IP address, new 

port #) as destination addr 

■ remember (in NAT translation table) every (source IP address, 
port #)  to (NAT IP address, new port #) translation pair  

■ incoming datagrams: replace (NAT IP address, new port #) in 
dest fields of every incoming datagram with corresponding 
(source IP address, port #) stored in NAT table

NAT: network address translation
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Network Layer 79

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345 
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1  
sends datagram to  
128.119.40.186, 80

NAT translation table 
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345 
……                                         ……

S: 128.119.40.186, 80  
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001 
D: 128.119.40.186, 802

2: NAT router 
changes datagram 
source addr from 
10.0.0.1, 3345 to 
138.76.29.7, 5001, 
updates table

S: 128.119.40.186, 80  
D: 138.76.29.7, 5001 3

3: reply arrives 
 dest. address: 
 138.76.29.7, 5001

4: NAT router 
changes datagram 
dest addr from 
138.76.29.7, 5001 to 10.0.0.1, 3345  

NAT: network address translation



16-bit port-number field:  
■ 60,000 simultaneous connections with a single 

LAN-side address! 

NAT is controversial: 
■ routers should only process up to layer 3 
■ violates end-to-end argument 

⬥NAT possibility must be taken into account by app 
designers, e.g., P2P applications 

■ address shortage should instead be solved by IPv6

The NAT controversy
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Routing
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The Internet is Big…
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Routing
How do we route messages from one machine 
to another? 
Subject to 

⬥churn 
⬥efficiency 
⬥reliability 
⬥economical considerations 
⬥political considerations
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Internet Protocol (IP)
The Internet is subdivided into disjoint 
Autonomous Systems (AS) 

Graph of 
subgraphs
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Autonomous Systems
ASs are organized in a graph 
routing between ASs using BGP (Border 
Gateway Protocol) Each AS is a routing domain 
in its own right 
■ has a private IP network 
■ runs its own routing protocols 
■ may have multiple IP subnets 

⬥each with their own IP prefix 

■ has a unique “AS number”
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Thus routing is hierarchical!
Three steps: 
1. A packet is first routed to an “edge router” (often called 

“gateway”) at the source AS---using the internal routing 
protocol used by the source AS 

2. Next the packet is routed to an edge router at the 
destination AS---determined by the destination address 
prefix---using BGP 

3. The AS’s edge router then forwards the packet to its 
ultimate destination---determined by the address suffix---
using the internal routing protocol used by the destination 
AS
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Routers (Layer-3 Switches)
Connects multiple LANs (subnets) 
Two classes: 
■ Edge or Border router: Resides at the edge of an 

AS, and has two faces 
⬥one faces outside to connect to one or more per edge 

router in other ASs 
⬥one faces inside, connecting to zero or more other 

routers within the same AS 

■ Interior router: 
⬥has no connections to routers in other ASs
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Internet Routing, observations
There are no special “government” routers 
that route between ASs.  Instead, each AS has 
one or more “edge routers” that are connected 
by interdomain links. 
Two types: 
■ Transit AS: forwards packets coming from one AS 

to another AS 
■ Stub AS: has only links to ASs higher in the 

hierarchy and does not do any forwarding
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Transit ASs

89

stub

transit

transit transit

(intradomain)



What’s an ISP?
An ISP (Internet Service Provider) is simply an 
AS (or collection of ASs) that provides, to its 
customers (which may be people or other ASs), 
access to the “The Internet” 
Provides one or more PoPs (Points of 
Presence) where its customers can connect.
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AS Tiers
Tier-1 
■ no “upstream peers” 
■ instead, peers with every other Tier-1 AS 
■ “default-free” routing 
■ “settlement-free connections” 
Tier-3 
■ a stub, connecting to one or more upstream ISPs 
■ connects consumers to the Internet 
Tier-2 
■ everything in between, i.e., transit ASs that have upstream ASs, 

default routes, etc.
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Tiers
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IXP: Internet Exchange Point



1

23

IP destination address in  
arriving packet’s header

routing algorithm

local forwarding table
dest address output  link
address-range 1 
address-range 2 
address-range 3 
address-range 4

3 
2 
2 
1

Interplay between routing, forwarding
routing algorithm determines 
end-end-path through network

forwarding table determines 
local forwarding at this router
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Model for Routing
A graph G(V,E), where vertices represent routers, 
edges represent available links 
■ For now, assume a unity weight associated with each link 
Centralized “link state” algorithms for finding suitable 
routes are straightforward 
■ e.g., Dijkstra’s shortest path algorithm 

Need distributed algorithms 
■ Distance vector algorithm
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Network Layer 95

Distance vector algorithm 
         = estimate of least cost from x to y 
■ x maintains  distance vector  

node x: 
■ knows cost to each neighbor v:  
■ maintains its neighbors’ distance vectors. For each 

neighbor v, x maintains  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key idea:  
❖ from time-to-time, each node sends its own 

distance vector estimate to neighbors 
❖ when x receives new DV estimate from neighbor, it 

updates its own DV using B-F equation:

                                                 for each y ∊ N

❖ under minor, natural conditions, the estimate Dx(y) 
converge to the actual least cost dx(y) 

Distance vector algorithm 
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iterative, asynchronous: each 
local iteration caused by:  

local link cost change  

DV update message from 
neighbor 

distributed: 
each node notifies 
neighbors only when its DV 
changes 
■ neighbors then notify their 

neighbors if necessary

wait for (change in local link 
cost or msg from neighbor) 

recompute estimates 

if DV to any dest has 
changed, notify neighbors  

each node:
Distance vector algorithm 



Routing Loops?

In steady state, there should be no routing 
loops 
But steady state is rare.  If routing tables are 
not in sync, routing loops can occur. 
To avoid problems, IP packets maintain a 
maximum hop count (TTL) that is decreased 
on every hop until 0 is reached, at which point 
a packet is dropped.
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Most Common Example

BGP (Border Gateway Protocol) 
■ but instead of shortest path, uses various other 

considerations to select which route is best! 

Used as the most common interdomain 
routing protocol or “Exterior Gateway 
Protocol”, but is also used in ASs for 
intradomain or “Interior Gateway” routing.

99



Why BGP?

Shortest path algorithms insufficient to handle 
myriad of operational (e.g., loop handling), 
economic, and political considerations 
Policy categories (Caesar and Rexford): 
■ business relationships 
■ traffic engineering 
■ scalability (improving stability, aggregation, etc.) 
■ security
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BGP Policy Implementation

policies at a router control 
■ import policy: which routes (advertised by peers) are 

accepted 
■ decision process: which routes are used 
■ export policy: which routes are advertised to peers 

policies sometimes need to be negotiated and 
implemented across multiple ISPs 
■ BGP allows advertised routes to be tagged with 

policies using the "community" attribute
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Transport Layer

102

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer



Transport Layer vs. Network Layer
Logical communication 
between hosts 

IP: best-effort 
delivery

LaptopY

LaptopX

Logical communication 
between processes  
  on hosts 

TCP & UDP: 
relies on & 

enhances network 
layer services

ProcessA

ProcessB



The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Router
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Session Session

messages

segments

datagrams

frames

bits

TCP	or	UDP

IP

Ethernet	
or	WiFi



Transport services and protocols
Transport protocols run in end systems  

▪ sender side: breaks app 
messages into segments, passes to 
network layer 

▪ receiver side: reassembles 
segments into messages, passes to 
app layer 

More than one transport protocol 
available to apps 

▪ Internet: TCP and UDP
application 
transport 
network 
data link 
physical

logical end-end transport

application 
transport 
network 
data link 
physical
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Transport Layer Analogy
2	houses	(hosts),	each	has	12	kid	siblings	
Kids:	(applications)		

• write	letters	(messages)	to	cousins	
Parents:	(transport	layer	protocol)		

• gather	the	letters	(multiplexing)	
• put	them	in	addressed	envelopes	(segments)	
• give	them	to	the	postman	(network	layer)	
• get	letters	from	postman,	deliver	(demux)	to	kids

postal service
network layer

host host

Anne Lorenzo
… …

applications

applications

transport  

layertransport  

layer



Multiplexing

process

socket

handle data from multiple 
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical
link

network

P3
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use header info to deliver 
received segments to correct  
socket

demultiplexing at receiver:

Demultiplexing

process

socket
transport

application

physical
link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical
link

network

P3
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(Datagram(Segment(Message)))
Host gets IP Datagram with: 
▪ source & dest IP addresses 

▪ one transport-layer segment 

▪ inside: source & dest port #  

  
Host uses IP addr & port #s to 
direct segment to appropriate 
socket

109

ver length

32 bits

data 
  

(variable length, 
typically a TCP  

or UDP segment) 

16-bit identifier
header 

 checksum
time to 

live

head. 
len

type of 
service

flgs fragment 
 offset

upper 
 layer

options (if any)

32 bit source IP address

IP	Datagram

32 bit destination IP address

source port # dest port #

application data  

(payload)

other header fields

TCP/UDP segment format

Dear James,



Internet transport-layer protocols
Transport Control Protocol (TCP) 
“Trusty Connection Protocol” ?? 
• reliable, in-order delivery 
• congestion control  
• flow control 
• connection setup 

User Datagram Protocol (UDP) 
“Unreliable Datagram Protocol” 
• unreliable, unordered delivery 
• no-frills extension of “best-effort” IP 

 Services not available:  
■ delay guarantees 
■ bandwidth guarantees

application 
transport 
network 
data link 
physical

application 
transport 
network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

logical end-end transport
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UDP: User Datagram Protocol [RFC 768]

❖“no frills,” “bare bones” Internet transport protocol 
❖“best effort” service, UDP segments may be: 

■ lost 
■ delivered out-of-order, duplicated to app 

❖ connectionless: 
■ no handshaking between UDP sender, receiver 
■ each UDP segment handled independently of others 

❖ reliable transfer still possible:  
▪ add reliability at application layer 
▪ application-specific error recovery!

111

I was gonna tell you guys a joke about UDP…
But you might not get it

I was you guys about UDP might not



Connectionless demultiplexing

Host receives UDP segment: 
▪ checks destination port # in segment 
▪ directs UDP segment to socket with that port # 

112

source port # dest port #

application data  

(payload)

length

UDP segment format

Dear James,

32 bits

length (in bytes) 
of UDP segment, 
including header

checksum
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Connectionless demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical
link

network

P4

DatagramSocket	
mySocket1	=	new	
DatagramSocket	(5775);	

source port: 9157 
dest port: 6428

source port: 6428 
dest port: 9157

source port: ? 
dest port: ?

source port: ? 
dest port: ?

IP datagrams w/ same dest port #, but different source IP addr or port #s 
→ directed to same socket at dest

DatagramSocket	
mySocket2	=	new	
DatagramSocket	(9157);	

DatagramSocket	
sererSocket	=	new	
DatagramSocket	(6428);	



Is there anything good about UDP?
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Speed: 
❖ no connection establishment (which can add delay) 
❖ no congestion control: UDP can blast away as fast as desired 

Simplicity: 
❖ no connection state at sender, receiver 
❖ small header size 

Target Users: 
❖ streaming multimedia apps (loss tolerant, rate sensitive) 
❖ DNS



Connection-oriented demux

❖TCP socket identified by 
4-tuple:  
▪ source IP address 
▪ source port number 
▪ dest IP address 
▪ dest port number 

❖demux: receiver uses all 
four values to direct 
segment to appropriate 
socket

❖ server host may support 
many simultaneous TCP 
sockets: 
▪ each socket identified by 

its own 4-tuple 
❖ web servers have 

different sockets for each 
connecting client 
▪ non-persistent HTTP will 

have different socket for 
each request
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Connection-oriented demux: example

transport

application

physical
link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157 
dest IP, port: B,80

source IP,port: B,80 
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: C,5775 
dest IP,port: B,80

source IP,port: C,9157 
dest IP,port: B,80three segments: 

• all destined to IP address: B, dest port: 80 
• demultiplexed to different sockets

server: IP 
address B
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TCP: Transmission Control Protocol

• Reliable,	ordered,	2-way	byte-stream	communication	
• Many	applications	demand	reliable,	ordered	delivery.	
They	should	not	have	to	implement	their	own	
protocol.	

• A	standard,	adaptive	protocol	that	delivers	good-
enough	performance	and	deals	well	with	congestion	
• E.g.,	all	web	traffic	travels	over	TCP/IP
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TCP segment structure

source port # dest port #

32 bits

application 
data  
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum

FSRPAUhead 
len

not 
used

options (variable length)

URG: urgent data  
(generally not used)

ACK: ACK # 
valid

PSH: push data now 
(generally not used)

RST, SYN, FIN: 
connection estab 
(setup, teardown 

commands)

# bytes  
rcvr willing 
to accept

counting 
by bytes  
of data 
(not segments!)

Internet 
checksum 

(as in UDP)
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TCP Packets

• Each packet carries a sequence number 
⬥Initial number chosen randomly 
⬥Number incremented by the data length 

• Each packet carries an acknowledgment 
⬥ Can acknowledge a sequence of bytes by ack’ing latest 

byte received 

• Reliable transport is implemented using these 
identifiers
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TCP Connections

• TCP is connection oriented 
• A connection is initiated with a 

three-way handshake 
• Three-way handshake agrees on 

initial sequence numbers 
• Takes 3 packets, 1.5 RTT (Round 

Trip Time)

SYN

SYN, ACK of SYN

ACK of SYN

120

SYN = Synchronize 
ACK = Acknowledgement

I would tell you a joke about TCP... If only to be acknowledged 😢



TCP Handshakes

The three-way handshake establishes common 
state on both sides of a connection 

■ Both sides will have seen one packet from the 
other side, thus know what the first seqno ought 
to be 

■ SYN-ACK also typically carries a new port for the 
server 

■ Both sides will know that the other side is ready to 
receive
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Typical TCP Usage

• 3 round-trips to set up a 
connection, send a data 
packet, receive a response, 
tear down connection 

• FINs work (mostly) like SYNs 
to tear down connection 

⬥ Need to wait after a FIN for 
straggling packets

SYN

SYN, ACK of SYN

ACK of SYNDATA

DATA, ACK

FIN, ACK
ACK
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Reliable transport

• TCP keeps a copy of all sent, 
but unacknowledged packets 

• If acknowledgment does not 
arrive within a “send timeout” 
period, packet is resent 

• Send timeout adjusts to the 
round-trip delay 

• ACKs can be piggybacked

123

DATA,seq=17,len=2

ACK 19

DATA,seq=19,len=2

DATA, seq=19,len=2

Send timeout

ACK 21
Here's a joke about TCP. 
Did you get it? 
Did you get it? 
Did you get it? 
Did you get it?



TCP timeouts

What is a good timeout period ? 
■ Want improved throughput w/o unnecessary transmissions 

à Timeout is thus a function of RTT and variance

AverageRTT := (1 - α) AverageRTT + α LatestRTT 
AverageVar  := (1 - β) AverageVar + β LatestVar 
where LatestRTT = (ack_receive_time – send_time), 
           LatestVar  = |LatestRTT – AverageRTT|, 
           α = 1/8, β = 1/4 typically. 
Timeout := AverageRTT + 4*AverageVar 
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TCP Windows

Multiple outstanding packets can increase throughput
125



How much data “fits” in a pipe?

Suppose the b/w is b bytes / second 
Suppose the RTT is r seconds 
Suppose an ACK is a small message 
■ you can send b * r bytes before receiving an ACK 

for the first byte 

But b/w and RTT are both variable…

126



TCP Windows

• Can have more than one 
packet in transit 

• Especially over fat pipes, 
e.g. satellite connection 

• Need to keep track of all 
packets within the window 

• Need to adjust window size

DATA, seq=16DATA, seq=17DATA, seq=18DATA, seq=19

ACK 17

ACK 18

ACK 19

ACK 20
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TCP Windows and Fast Retransmit

• When receiver detects a lost 
packet (i.e. a hole in the 
seqno space), it acks the last 
seqno it successfully 
received 

• Sender can quickly detect 
that a loss occurred without 
waiting for a timeout
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DATA, seq=16DATA, seq=17DATA, seq=18DATA, seq=19

ACK 17

ACK 20

ACK 17
DATA, seq=17



TCP Congestion Control
• TCP typically increases its window size by one MTU 

(Maximum Transmission Unit) every RTT 
• It typically halves the window size when a packet drop 

occurs 
• A packet drop is evident from the acknowledgments 

• Therefore, it will slowly build up to the max 
bandwidth, and hover around the max 

• It doesn’t achieve the max possible though 
• Instead, it shares the b/w well with other TCP connections 

• This linear-increase, exponential backoff in the face of 
congestion is termed TCP-friendliness

129



TCP Window Size

• Linear increase 
• Exponential backoff 

(Assumes no other 
losses in network 
except those due to 
b/w)

Time

B
an

dw
id

th

Max Bandwidth
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TCP Slow Start

❖ Linear increase:  
• takes a long time to build up a window size that 

matches the link bandwidth*delay 
• Most file transactions end before that happens 
• TCP spends a lot of time with small windows, never 

reaching a sufficiently large window size 
❖ Better: Exponential increase  
• allow TCP to build up to a large window size initially 

by increasing the window size linearly for each ack 
received 

• Effectively doubling the window size until first loss
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TCP w/ initial phase exponential

(Assumes no other 
losses in network 
except those due 
to b/w)

Time

B
an

dw
id

th

Max Bandwidth
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TCP Summary

Reliable ordered message delivery 
⬥Connection oriented, 3-way handshake 

Transmission window for better throughput 
⬥Timeouts based on link parameters 

Congestion control 
⬥Linear increase, exponential backoff 

Fast adaptation 
⬥Exponential increase in the initial phase
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Application Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer
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DNS: domain name system
people: many identifiers: 

■ SSN, name, passport # 
Internet hosts, routers: 

■ IP address (32 bit) - 
used for addressing 
datagrams 

■ “name”, e.g., 
www.yahoo.com - used 
by humans 

Q: how to map between IP 
address and name, and vice 
versa ?

Domain Name System: 
distributed database 
implemented in hierarchy of 
many name servers 
application-layer protocol: hosts, 
name servers communicate to 
resolve names (address/name 
translation) 
■ note: core Internet function, 

implemented as application-
layer protocol 

■ complexity at network’s “edge”
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DNS: services, structure 
why not centralize DNS? 

single point of failure 

traffic volume 
distant centralized database 

maintenance

DNS services 
hostname to IP address 
translation 
host aliasing 
■ canonical, alias names 

mail server aliasing 
load distribution 
■ replicated Web servers: 

many IP addresses 
correspond to one 
name

A: doesn’t scale!
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Root DNS Servers

com DNS servers org DNS servers edu DNS servers

cornell.edu 
DNS servers

utexas.edu 
DNS serversyahoo.com 

DNS servers
amazon.com 
DNS servers

pbs.org 
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx: 
client queries root server to find com DNS server 

client queries .com DNS server to get amazon.com DNS server 

client queries amazon.com DNS server to get  IP address for 
www.amazon.com

… …
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DNS: root name servers
contacted by local name server that can not resolve name 

root name server: 
■ contacts authoritative name server if name mapping not known 
■ gets mapping 
■ returns mapping to local name server

    13 root name 
“servers” worldwide

a. Verisign, Los Angeles CA 
    (5 other sites) 
b. USC-ISI Marina del Rey, CA 
l. ICANN Los Angeles, CA 
   (41 other sites)

e. NASA Mt View, CA 
f. Internet Software C. 
Palo Alto, CA (and 48 other   
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo 
(5 other sites)

c. Cogent, Herndon, VA (5 other sites) 
d. U Maryland College Park, MD 
h. ARL Aberdeen, MD 
j. Verisign, Dulles VA (69 other sites )

g. US DoD Columbus, 
OH (5 other sites)
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TLD, authoritative servers
top-level domain (TLD) servers: 

■ responsible for com, org, net, edu, aero, jobs, museums, 
and all top-level country domains, e.g.: uk, fr, ca, jp 

■ Network Solutions maintains servers for .com TLD 
■ Educause for .edu TLD 

authoritative DNS servers:  
■ organization’s own DNS server(s), providing authoritative 

hostname to IP mappings for organization’s named hosts  
■ can be maintained by organization or service provider
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Local DNS name server
does not strictly belong to hierarchy 
each ISP (residential ISP, company, university) 
has one 
■ also called “default name server” 

when host makes DNS query, query is sent to 
its local DNS server 
■ has local cache of recent name-to-address 

translation pairs (but may be out of date!) 
■ acts as proxy, forwards query into hierarchy
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requesting host 
cs.utexas.edu

irnerio.cs.cornell.edu

root DNS server

local DNS server 
dns.utexas.edu

1

2
3

4

5

6

authoritative DNS server 
dns.cs.cornell.edu

78

TLD DNS server

DNS name  
resolution example

host at cs.utexas.edu wants IP 
address for 
irnerio.cs.cornell.edu

iterated query: 
❖ contacted server replies 

with name of server to 
contact 

❖ “I don’t know this name, 
but ask this server”
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45

6

3

recursive query: 
❖ puts burden of name 

resolution on 
contacted name 
server 

❖ heavy load at upper 
levels of hierarchy?

requesting host 
cs.utexas.edu

irnerio.cs.cornell.edu

root DNS server

local DNS server 
dns.utexas.edu

1

2
7

authoritative DNS server 
dns.cs.cornell.edu

8

DNS name  
resolution example

TLD DNS  
server
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DNS: caching, updating records
❖ once (any) name server learns mapping, it caches 

mapping 
■ cache entries timeout (disappear) after some time (TTL) 
■ TLD servers typically cached in local name servers 

⬥ thus root name servers not often visited 

❖  cached entries may be out-of-date (best effort name-
to-address translation!) 
■ if name host changes IP address, may not be known 

Internet-wide until all TTLs expire 
❖ update/notify mechanisms proposed IETF standard 

■ RFC 2136
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Attacking DNS
DDoS attacks 
❖ Bombard root servers with 

traffic 
■ Not successful to date 

■ Traffic Filtering 

■ Local DNS servers cache IPs 
of TLD servers, allowing root 
server bypass 

❖ Bombard TLD servers 
■ Potentially more dangerous

Redirect attacks 
❖ Man-in-middle 

▪ Intercept queries 
❖ DNS poisoning 

▪ Send bogus replies to DNS 
server, which caches 

Exploit DNS for DDoS 
❖ Send queries with 

spoofed source address: 
target IP 

❖ Requires amplification
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Sockets
socket: door between application process and end-end-

transport protocol 
• sending process shoves message out door 
• sending process relies on transport infrastructure on other 

side of door to deliver message to socket at receiving 
process

Internet

controlled 
by OS 

controlled by 
app developer

transport

application

physical
link

network

process

transport

application

physical

link

network

process
socket



Socket programming 

Two socket types for two transport services: 
• UDP: unreliable datagram 
• TCP: reliable, byte stream-oriented 
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Application Example: 
1. client reads a line of characters (data) from its 

keyboard and sends data to server 
2. server receives the data and converts characters to 

uppercase 
3. server sends modified data to client 
4. client receives modified data and displays line on its 

screen



Socket programming with UDP

UDP: no “connection” between client & server 
▪ no handshaking before sending data 
▪ sender explicitly attaches IP destination address and 

port # to each packet 
▪ receiver extracts sender IP address and port# from 

received packet 

UDP: transmitted data may be lost or received 
out-of-order 

Application viewpoint: 
▪ UDP provides unreliable transfer  of groups of bytes 

(“datagrams”)  between client and server
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Client/server socket interaction: UDP

close 
clientSocket

read datagram from 
clientSocket

create socket: 
clientSocket = 
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and 
port=x; send datagram via 
clientSocket

create socket, port= x:
serverSocket = 
socket(AF_INET,SOCK_DGRAM)

read datagram from 
serverSocket

write reply to 
serverSocket 
specifying  
client address, 
port number
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server (running on serverIP) client
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Example app: UDP client

from socket import * 
serverName = ‘hostname’ 
serverPort = 12000 
clientSocket = socket(AF_INET,  
                                   SOCK_DGRAM) 
message = raw_input(’Input lowercase sentence:’) 
clientSocket.sendto(message.encode(), 
                                      (serverName, serverPort)) 

modifiedMessage, serverAddress =  
                                   clientSocket.recvfrom(2048) 
print modifiedMessage.decode() 
clientSocket.close()

Python UDPClient
include Python’s socket  
library

create UDP socket for 
server

get user keyboard 
input 

Attach server name, port to 
message; send into socket

print out received string and 
close socket

read reply characters from 
socket into string
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Example app: UDP server

from socket import * 
serverPort = 12000 
serverSocket = socket(AF_INET, SOCK_DGRAM) 
serverSocket.bind(('', serverPort)) 
print (“The server is ready to receive”) 
while True: 
    message, clientAddress = serverSocket.recvfrom(2048) 
    modifiedMessage = message.decode().upper() 
    serverSocket.sendto(modifiedMessage.encode(), 
                                      clientAddress)

Python UDPServer

create UDP socket

bind socket to local port 
number 12000

loop forever

Read from UDP socket into 
message, getting client’s 
address (client IP and port)

send upper case string back 
to this client



Socket programming with TCP

client must contact server 
▪ server process must first be 

running 
▪ server must have created 

socket (door) that welcomes 
client’s contact 

client contacts server by: 
▪ Creating TCP socket, 

specifying IP address, port 
number of server process 

▪ when client creates socket: 
client TCP establishes 
connection to server TCP

▪ when contacted by client, 
server TCP creates new socket 
for server process to 
communicate with that 
particular client 
• allows server to talk with 

multiple clients 
• source port numbers used 

to distinguish clients (more 
in Chap 3)
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TCP provides reliable, in-order 
byte-stream transfer (“pipe”)  
between client and server

application viewpoint:



Client/server socket interaction: TCP
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wait for incoming 
connection request
connectionSocket = 
serverSocket.accept()

create socket, 
port=x, for incoming 
request:
serverSocket = socket()

create socket, 
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using 
clientSocketread request from 

connectionSocket

write reply to 
connectionSocket

TCP  
connection setup

close 
connectionSocket

read reply from 
clientSocket

close 
clientSocket
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Example app: TCP client

from socket import * 
serverName = ’servername’ 
serverPort = 12000 
clientSocket = socket(AF_INET, SOCK_STREAM) 
clientSocket.connect((serverName,serverPort)) 
sentence = raw_input(‘Input lowercase sentence:’) 
clientSocket.send(sentence.encode()) 
modifiedSentence = clientSocket.recv(1024) 
print (‘From Server:’, modifiedSentence.decode()) 
clientSocket.close()

Python TCPClient

create TCP socket for 
server, remote port 12000

No need to attach server 
name, port 
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Example app: TCP server

 from socket import * 
serverPort = 12000 
serverSocket = socket(AF_INET,SOCK_STREAM) 
serverSocket.bind((‘’,serverPort)) 
serverSocket.listen(1) 
print ‘The server is ready to receive’ 
while True: 
     connectionSocket, addr = serverSocket.accept() 
      
     sentence = connectionSocket.recv(1024).decode() 
     capitalizedSentence = sentence.upper() 
     connectionSocket.send(capitalizedSentence. 
                                                            encode()) 
     connectionSocket.close()

Python TCPServer

create TCP welcoming 
socket

server begins listening for  
incoming TCP requests

loop forever

server waits on accept() 
for incoming requests, new 
socket created on return

read bytes from socket (but 
not address as in UDP)

close connection to this 
client (but not welcoming 
socket)


