
Networking

based on slides by Prof. Sirer, Bracy, Van Renesse, Ross, Kurose 1

Basic Network Abstraction

 A process can create “endpoints”
 Each endpoint has a unique address
 Processes can receive messages on
endpoints
 Processes can send messages to
endpoints
 A message is a byte array

2

Some issues…

 How are addresses assigned?
 How does a message to some address find its way to

the corresponding endpoint?
 Can one broadcast messages?
■ Can multiple endpoints share the same address?
 Can messages
■ be arbitrarily large?
■ be lost or garbled?
■ be re-ordered?
 What do processes “stick” in these messages?

3

Network “protocol”

 An agreement between processes about
the content of messages
■ Syntax: Layout of bits, bytes, fields, etc.

⬥message format
■ Semantics: What they mean

Examples:
■ HTTP “get” requests and responses

⬥HTML is part of the format
■ Excuse me, please, thank you, etc. in real life

4

Network Layering

 The network abstraction is usually layered
■ Each layer provides a service to layers above; relies on services from

layers below

Example:

Application Layer HTTP/FTP/DNS; exchanges messages

Transport Layer Transports messages; TCP (connection oriented)/
UDP; exchanges segments

Network Layer Transports segments; IP; exchanges datagrams

Link Layer Transports datagrams; Ethernet/WiFi; exchanges
frames

Physical Layer Trasports frames;wires, signal encoding, wireless;
exchanges bits

5

Why Layering?

Modularity
■ Allows to identify relationship between distinct

pieces of complex system
■ Eases maintenance and updating of system

⬥change of implementation of layer’s service
transparent to rest of system

Are there costs to modularity?

6

destination
application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M
network

link
physical

HtHnHl M

HtHn M HtHn M

link
physical

Encapsulation

7

application
transport
network

link
physical

HtHn M

segment Ht

HtHnHl M

message M

Ht M

Hn

source

switch

HtHnHl M HtHnHl M

router

datagram
frame

Link Layer: 
Local Area Networking (LAN) and Ethernet

8

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Where is the Link Layer implemented?

In each host, through one
or more NICs
■ Network Interface Cards

⬥ Ethernet, 802.11, etc.

Attaches into host’s
system buses
Combination of hardware,

software, firmware

9

controller

physical
transmission

cpu memory

host bus
(e.g., PCI)

network adapter card

application
transport
network

link

link
physical

Addressing

Each NIC has a MAC address
■ Media Access Control address
■ Unique!
■ 6 bytes long
■ Ethernet example: b8:e3:56:15:6a:72
■ Address space managed by IEEE; first 24 bits identify

manufacturer
■ Does not change if the NIC moves

⬥ Not true of IP address!

10

Multiple access protocols

❖ single shared broadcast channel

❖ two or more simultaneous transmissions by nodes: interference

▪ collision if node receives two or more signals at the
same time

multiple access protocol
❖ distributed algorithm that determines how nodes share channel,

i.e., determine when node can transmit

❖ communication about channel sharing must use channel itself!
▪ no out-of-band channel for coordination

11

An ideal multiple access protocol

given: broadcast channel of rate R bps

desiderata:
1. node that wants to transmit, can send at rate R.
2. when M nodes want to transmit, each can send at

average rate R/M
3. fully decentralized:

⬥no special node to coordinate transmissions
⬥no synchronization of clocks, slots

4. simple

12

MAC protocols: taxonomy
three broad classes:

channel partitioning
■ divide channel into smaller “pieces” (time slots, frequency, code)
■ allocate piece to node for exclusive use

random access
■ channel not divided, allow collisions
■ “recover” from collisions

“taking turns”
■ nodes take turns, but nodes with more to send can take longer turns

13

Channel partitioning MAC protocols: TDMA
TDMA: time division multiple access
❖ access to channel in "rounds"
❖ each station gets fixed length slot (length =

pkt trans time) in each round
❖ unused slots go idle
❖ example: 6-station LAN, 1,3,4 have frames,

slots 2,5,6 idle

1 3 4 1 3 4

6-slot
frame

6-slot
frame

14

FDMA: frequency division multiple access
❖ channel spectrum divided into frequency bands

❖ each station assigned fixed frequency band

❖ unused transmission time in frequency bands go idle

❖ example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6
idle
fre

qu
en

cy
 b

an
ds time

FDM cable

Channel partitioning MAC protocols: FDMA

15

“Taking turns” MAC protocols
channel partitioning MAC protocols:

■ share channel efficiently and fairly at high load
■ inefficient at low load: delay in channel access, 1/N

bandwidth allocated even if only 1 active node!

random access MAC protocols
■ low load: single node can fully utilize channel
■ high load: collision overhead

“taking turns” protocols
look for best of both worlds!

16

token passing:
❖ control token passed

from one node to next
sequentially.

❖ token message
❖ concerns:

▪ token overhead
▪ latency
▪ single point of failure

(token)

T

data

(nothing
to send)

T

“Taking turns” MAC protocols

17

Random access protocols
when node has packet to send
■ transmit at full channel data rate R.
■ no a priori coordination among nodes
multiple transmitting nodes ➜ “collision”,
random access MAC protocol specifies:
■ how to detect collisions
■ how to recover from collisions (e.g., via delayed

retransmissions)
examples of random access MAC protocols:
■ slotted ALOHA, ALOHA
■ CSMA, CSMA/CD, CSMA/CA

18

Example: Ethernet

1976, Metcalfe & Boggs at Xerox
⬥ Later at 3COM

Based on the Aloha network in Hawaii
Named after the “luminiferous ether”
Centered around a broadcast bus
Simple link-level protocol, scales pretty well
Tremendously successful
Still in widespread use

⬥ many orders of magnitude increase in bandwidth since early versions

19

“CSMA/CD”

Carrier sense
■ Listen before you speak

Multiple access
■ Multiple hosts can access the network

Collision detect
■ Detect and respond to cases where two hosts

collide

20

CSMA collisions
collisions can still
occur: propagation
delay means two nodes
may not hear each
other’s transmission

collision: entire packet
transmission time
wasted
■ distance & propagation

delay play role in in
determining collision
probability

spatial layout of nodes

21

CSMA/CD (collision detection)
CSMA/CD: carrier sensing, deferral as in CSMA

▪ collisions detected within short time
▪ colliding transmissions aborted, reducing channel

wastage
❖ collision detection:

▪ easy in wired LANs: measure signal strengths,
compare transmitted, received signals

▪ difficult in wireless LANs: received signal strength
overwhelmed by local transmission strength

22

CSMA/CD (collision detection)
spatial layout of nodes

23

Ethernet CSMA/CD algorithm

1. NIC receives datagram
from network layer, creates
frame

2. If channel idle, starts frame
transmission. If channel
busy, wait until channel idle,
then transmit.

3. If entire frame transmitted
without detecting another
transmission, done!

4. If another transmission
detected, abort and send
jam signal

5. After aborting, NIC enters
binary (exponential) backoff:
■ after mth collision, choose

K at random from {0,1,2,
…, 2m-1}. Wait K·512 bit
times, return to Step 2

■ longer backoff interval
with more collisions

24

MAC addresses
32-bit IP address:
■ network-layer address for interface
■ used for layer 3 (network layer) forwarding (coming up)

MAC (or LAN or physical or Ethernet) address:
■ function: used ‘locally” to get frame from one interface to another

physically-connected interface (same network, in IP-addressing
sense)

■ 48 bit MAC address (for most LANs) burned in NIC ROM,
also sometimes software settable

■ e.g.: 1A-2F-BB-76-09-AD

25

MAC addresses on a LAN
each adapter on LAN has unique MAC address

adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

 LAN
(wired or
wireless)

26

ARP: address resolution protocol
ARP table: each IP node (host,
router) on LAN has table

▪ IP/MAC address
mappings for some LAN
nodes:

 < IP address; MAC address; TTL>

▪ TTL (Time To Live): time
after which address
mapping will be forgotten
(typically 20 min)

Question: how to determine
interface’s MAC address,
knowing its IP address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53
 LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

27

ARP protocol: same LAN
A wants to send datagram to B
■ B’s MAC address not in A’s ARP

table.

28

ARP protocol: same LAN
A wants to send datagram to B
■ B’s MAC address not in A’s ARP

table.
A broadcasts ARP query packet,
containing B's IP address
■ dest MAC address = FF-FF-FF-FF-

FF-FF
■ all nodes on LAN receive ARP

query
B receives ARP packet, replies
to A with its (B's) MAC address
■ frame sent to A’s MAC address

(unicast)

A caches (saves) IP-to-
MAC address pair in its
ARP table until information
becomes old (times out)
■ soft state: goes away unless

refreshed

ARP is “plug-and-play”:
■ nodes create their ARP tables

without intervention from net
administrator

29

walkthrough: send datagram from A to B via R
■ focus on addressing – at IP (datagram) and MAC layer (frame)
■ assume A knows B’s IP address
■ assume A knows IP address of first hop router, R
■ assume A knows R’s MAC address (how?)

Addressing: routing to another LAN

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

30

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP
Eth
Phy

IP src: 111.111.111.111
 IP dest: 222.222.222.222

❖ A creates IP datagram with IP source A, destination B
❖ A creates link-layer frame with R's MAC address as dest, frame

contains A-to-B IP datagram

MAC src: 74-29-9C-E8-FF-55
 MAC dest: E6-E9-00-17-BB-4B

31

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Addressing: routing to another LAN

IP
Eth
Phy

❖ frame sent from A to R

IP
Eth
Phy

❖ frame received at R, datagram removed, passed up to IP

MAC src: 74-29-9C-E8-FF-55
 MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111
 IP dest: 222.222.222.222

IP src: 111.111.111.111
 IP dest: 222.222.222.222

32

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP src: 111.111.111.111
 IP dest: 222.222.222.222

❖ R forwards datagram with IP source A, destination B
❖ R creates link-layer frame with B's MAC address as dest, frame

contains A-to-B IP datagram
MAC src: 1A-23-F9-CD-06-9B
 MAC dest: 49-BD-D2-C7-56-2A

IP
Eth
Phy

IP
Eth
Phy

Addressing: routing to another LAN

33

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

❖ R forwards datagram with IP source A, destination B
❖ R creates link-layer frame with B's MAC address as dest, frame

contains A-to-B IP datagram

IP src: 111.111.111.111
 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B
 MAC dest: 49-BD-D2-C7-56-2A

IP
Eth
Phy

IP
Eth
Phy

Addressing: routing to another LAN

34

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

❖ R forwards datagram with IP source A, destination B
❖ R creates link-layer frame with B's MAC address as dest, frame

contains A-to-B IP datagram
IP src: 111.111.111.111
 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B
 MAC dest: 49-BD-D2-C7-56-2A

IP
Eth
Phy

Addressing: routing to another LAN

35

Ethernet
“dominant” wired LAN technology:

cheap $20 for NIC
first widely used LAN technology
simpler, cheaper than token LANs and ATM
kept up with speed race: 10 Mbps – 10 Gbps

Metcalfe’s
Ethernet sketch

36

Ethernet: physical topology
bus: popular through mid 90s
■ all nodes in same collision domain
star: prevails today
■ active switch in center
■ each “spoke” runs a (separate) Ethernet protocol (nodes

do not collide with each other)

switch

bus: coaxial cable
star

37

Ethernet frame structure
sending adapter encapsulates IP datagram (or other

network layer protocol packet) in Ethernet frame

preamble:
❖ 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011
❖ used to synchronize receiver, sender clock rates

dest.
address

source
address

data
(payload)preamble

type

CRC

38

Ethernet frame structure (more)
❖ addresses: 6 byte source, destination MAC addresses

▪ if adapter receives frame with matching destination
address, or with broadcast address), it passes data
in frame to network layer protocol

▪ otherwise, adapter discards frame
❖ type: indicates higher layer protocol (mostly IP but

others possible, e.g., Novell IPX, AppleTalk)
❖ CRC: cyclic redundancy check at receiver (basically, a

hash of the frame)
▪ error detected: frame is dropped

dest.
address

source
address

data
(payload) CRCpreamble

type 46 to 1500 bytes

39

Link Layer 40

Ethernet: unreliable, connectionless
connectionless: no handshaking between sending and

receiving NICs
unreliable: receiving NIC doesnt send acks or nacks to

sending NIC
■ data in dropped frames recovered only if higher

network layer ensures reliability (e.g., TCP),
otherwise dropped data lost

Ethernet’s MAC protocol: CSMA/CD wth binary backoff

Ethernet Problems
The endpoints are trusted to follow the
collision-detect and retransmit protocol

⬥ Certification process tries to assure compliance
⬥ Not everyone always backs off exponentially

Hosts are trusted to only listen to packets
destined for them

⬥ But the data is available for all to see
■ All packets are broadcast on the wire
■ Can place Ethernet card in promiscuous mode and liste

41

Ethernet switch
link-layer device: takes an active role
■ store, forward Ethernet frames
■ examine incoming frame’s MAC address,

selectively forward frame to one-or-more
outgoing links when frame is to be forwarded on
segment, uses CSMA/CD to access segment

transparent
■ hosts are unaware of presence of switches
plug-and-play, self-learning
■ switches do not need to be configured

42

Switch: multiple simultaneous transmissions
hosts have dedicated, direct
connection to switch
switches buffer packets
Ethernet protocol used on each
incoming link, but no collisions;
full duplex
■ each link is its own collision

domain
switching: A-to-A’ and B-to-B’ can
transmit simultaneously, without
collisions switch with six interfaces

(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6

43

Switch forwarding table
Q: how does switch know A’
reachable via interface 4, B’
reachable via interface 5?

switch with six interfaces
(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6❖ A: each switch has a switch
table, each entry:
▪ (MAC address of host, interface

to reach host, time stamp)
▪ a routing table!

Q: how are entries created,
maintained in switch table?

44

A

A’

B

B’ C

C’

1 2

345

6

Switch: self-learning
switch learns which hosts can
be reached through which
interfaces
■ when frame received,

switch “learns”
location of sender:
incoming LAN segment

■ records sender/
location pair in switch
table

A A’

Source: A
Dest: A’

MAC addr interface TTL

Switch table
(initially empty)

A 1 60

45

A

A’

B

B’ C

C’

1 2

345

6

Self-learning, forwarding: example
A A’

Source: A
Dest: A’

MAC addr interface TTL

switch table
(initially empty)

A 1 60

A A’A A’A A’A A’A A’

frame destination, A’,
locaton unknown: flood

A’ A

❖ destination A location

known:

A’ 4 60

 selectively send
on just one link

46

Switch: frame filtering/forwarding
when frame received at switch:  

1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination 

 then {
 if destination on LAN segment from which frame arrived 

 then drop frame
 else forward frame on interface indicated by entry
 }
 else flood /* forward on all interfaces except arriving
 interface */

47

Link Layer 48

Interconnecting switches

❖ switches can be connected together

Q: sending from A to G - how does S1 know to
forward frame destined to F via S4 and S3?
❖ A: self learning! (works exactly the same as in

single-switch case!)

A
B

S1

C D
E

F
S2

S4

S3

H
I

G

Lessons for LAN design
Best-effort delivery simplifies network design
A simple, distributed protocol can tolerate failures
and be easy to administer

49

Network Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

50

Network Layer
❖ There are lots of Local Area Networks

❖ each with their own
❖ address format and allocation scheme
❖ packet format
❖ LAN-level protocols, reliability guarantees

❖ Wouldn’t it be nice to tie them all together?
❖ Nodes with multiple NICs can provide the glue!
❖ Standardize address and packet formats

❖ This gives rise to an “Internetwork”
❖ aka WAN (wide-area network)

51

Internetworking Origins
Expensive supercomputers scattered throughout US
Researchers scattered differently throughout the US
Needed a way to connect researchers to expensive
machinery

52

Internetworking Origins
Department of Defense initiated studies on how to
build a resilient global network

⬥ How do you coordinate a nuclear attack ?

Interoperability and dynamic routing are a must
⬥ Along with a lot of other properties

Result: Internet (orig. ARPAnet)
A complex system with simple components

53

Internet Overview

Every host is assigned, and identified by, an IP address
Messages are called datagrams
■ the term packet is probably more common though…

Each datagram contains a header that specifies the
destination address
The network routes datagrams from the source to the
destination

Design Decision: What kinds of properties should the
network provide?

54

The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Network

Data Link

Physical

Router1 Router2

55

Session Session

The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Network

Data Link

Physical

Router1 Router2

56

Session Session
Connection management (RPC)

Format translation, serialization, encryption
(EBCDIC/ASCI)

Network Stack – quite literally
Each layer has its own header
You can think of packet as a stack
On send, each layer pushes a header onto the stack
On receipt, each layer pops a header
■ Headers often contain a “demultiplexer” like a port or

protocol number to decide where to transfer control on
the way up the stack.

57

End-to-End Argument
A kind of Occam’s Razor for Internet architecture
Application-specific properties are best provided
by the applications, not the network

⬥ Guaranteed, or ordered, packet delivery, duplicate suppression,
security, etc.

The Internet performs the simplest packet routing
and delivery service it can

⬥ Packets are sent on a best-effort basis
⬥ Higher-level applications do the rest

58

1

23

0111

value in arriving
packet’s header

routing algorithm

local forwarding table
header value output link

0100
0101
0111
1001

3
2
2
1

Two key network-layer functions
forwarding: move
packets from router’s
input to appropriate
router output

routing: determine
route taken by packets
from source to dest.

■ routing algorithms

determines end-end
path through network

determines local
forwarding at router

59

Network service model

Q: What service model for “channel” transporting

datagrams from sender to receiver?

example services for
individual datagrams:

❖ guaranteed delivery
❖ guaranteed delivery with

less than 40 msec delay

example services for a flow
of datagrams:
in-order datagram delivery
guaranteed minimum
bandwidth to flow
restrictions on changes in
inter-packet spacing

60

Network layer service models
Network

Architecture

Internet

ATM

ATM

ATM

ATM

Service
Model

best effort

CBR

VBR

ABR

UBR

Bandwidth

none

constant
rate
guaranteed
rate
guaranteed
minimum
none

Loss

no

yes

yes

no

no

Order

no

yes

yes

yes

yes

Timing

no

yes

yes

no

no

Congestion
feedback

no (inferred
via loss)
no
congestion
no
congestion
yes

no

Guarantees ?

61

Connection, connection-less service
❖ datagram network provides network-layer

connectionless service (IP)
❖ virtual-circuit network provides network-layer

connection service (ATM)
❖ Much like a phone network

❖ analogous to TCP/UDP connection-oriented /
connectionless transport-layer services
❖ Coming up…

62

Datagram networks
no call setup at network layer
routers: no state about end-to-end connections
■ no network-level concept of “connection”

packets forwarded using destination host address

1. send datagrams

application
transport
network
data link
physical

application
transport
network
data link
physical

2. receive datagrams

63

1

23

Datagram forwarding table

IP destination address in
arriving packet’s header

routing algorithm

local forwarding table
dest address output link
address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

4 billion IP addresses, so
rather than list individual
destination address
list range of addresses
(aggregate table entries)

64

Destination Address Range

11001000 00010111 00010000 00000000
through
11001000 00010111 00010111 11111111
11001000 00010111 00011000 00000000
through
11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through
11001000 00010111 00011111 11111111

otherwise

Link Interface

0

1

2

3

Q: but what happens if ranges don’t divide up so nicely?

Datagram forwarding table

65

Longest prefix matching

Destination Address Range
11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********
otherwise

DA: 11001000 00010111 00011000 10101010

examples:
DA: 11001000 00010111 00010110 10100001 which interface?

which interface?

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix matching

Link interface
0
1
2
3

66

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier
header

 checksum
time to

live

32 bit source IP address

head.
len

type of
service

flgs fragment
 offset

upper
 layer

32 bit destination IP address

options (if any)

IP datagram format
IP protocol version

number
header length

 (bytes)

upper layer protocol
to deliver payload to

total datagram
length (bytes)

“type” of data
for
fragmentation/
reassemblymax number

remaining hops
(decremented at

each router)

e.g. timestamp,
record route
taken, specify
list of routers
to visit.

how much overhead?
❖ 20 bytes of TCP
❖ 20 bytes of IP
❖ = 40 bytes + app

layer overhead

67

IP fragmentation, reassembly
network links have MTU
(max.transfer size) - largest
possible link-level frame
■ different link types,

different MTUs
large IP datagram divided
(“fragmented”) within net
■ one datagram becomes

several datagrams
■ “reassembled” only at final

destination
■ IP header bits used to

identify, order related
fragments

fragmentation:
in: one large datagram
out: 3 smaller datagrams

reassembly

…

…

68

ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

one large datagram becomes
several smaller datagrams

example:
❖ 4000 byte datagram
❖ MTU = 1500 bytes

1480 bytes in  
data field

offset =
1480/8

IP fragmentation, reassembly

69

IP Addressing
Every (active) NIC has an IP address

⬥ IPv4: 32-bit descriptor, e.g. 128.84.12.43
⬥ IPv6: 128-bit descriptor (but only 64 bits “functional”)
⬥ Will use IPv4 unless specified otherwise…

Each Internet Service Provider (ISP) owns a set of
IP addresses
ISPs assign IP addresses to NICs
An IP address is not an identifier:

⬥ IP addresses can be re-used
⬥ Same NIC may have different IP addresses over time

70

Subnets
IP address:
■subnet part - high order
bits

■host part - low order bits

what’s a subnet ?
■device interfaces with
same “subnet part” of IP
address

■can physically reach each
other without intervening
router

network consisting of 3 subnets

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

71

how many?
223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

Subnets

72

IP addressing: CIDR
CIDR: Classless InterDomain Routing

▪ subnet portion of address of arbitrary length
▪ address format: a.b.c.d/x, where x is # bits in

subnet portion of address

11001000 00010111 00010000 00000000

subnet
part

host
part

200.23.16.0/23

73

IP addresses: how to get one?

Q: How does a host get IP address?

hard-coded by system admin in a file
■ Windows: control-panel->network-

>configuration->tcp/ip->properties
■ UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server
■ “plug-and-play”

74

Addressing & DHCP

DHCP is used to discover IP addresses (and more)
 DHCP = Dynamic Host Configuration Protocol

“I just got here. My
physical address is
1a:34:2c:9a:de:cc.
What’s my IP?”

128.84.96.90
DHCP Server

???

128.84.96.91

“Your IP is 128.84.96.89
for the next 24 hours”

75

NAT: network address translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

datagrams with source or
destination in this network
have 10.0.0/24 address for
source, destination (as usual)

all datagrams leaving local
network have same single

source NAT IP address:
138.76.29.7,different source

port numbers
76

motivation: local network uses just one IP address
as far as outside world is concerned:
■ range of addresses not needed from ISP: just one IP

address for all devices
■ can change addresses of devices in local network

without notifying outside world
■ can change ISP without changing addresses of devices

in local network
■ devices inside local net not explicitly addressable,

visible by outside world (a security plus)

NAT: network address translation

77

 implementation: NAT router must:  
■ outgoing datagrams: replace (source IP address, port #) of

every outgoing datagram to (NAT IP address, new port #)
. . . remote clients/servers will respond using (NAT IP address, new

port #) as destination addr 

■ remember (in NAT translation table) every (source IP address,
port #) to (NAT IP address, new port #) translation pair  

■ incoming datagrams: replace (NAT IP address, new port #) in
dest fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table

NAT: network address translation

78

Network Layer 79

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr
138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

NAT: network address translation

16-bit port-number field:
■ 60,000 simultaneous connections with a single

LAN-side address!

NAT is controversial:
■ routers should only process up to layer 3
■ violates end-to-end argument

⬥NAT possibility must be taken into account by app
designers, e.g., P2P applications

■ address shortage should instead be solved by IPv6

The NAT controversy

80

Routing

81

The Internet is Big…

82

Routing
How do we route messages from one machine
to another?
Subject to

⬥churn
⬥efficiency
⬥reliability
⬥economical considerations
⬥political considerations

83

Internet Protocol (IP)
The Internet is subdivided into disjoint
Autonomous Systems (AS)

Graph of
subgraphs

84

Autonomous Systems
ASs are organized in a graph
routing between ASs using BGP (Border
Gateway Protocol) Each AS is a routing domain
in its own right
■ has a private IP network
■ runs its own routing protocols
■ may have multiple IP subnets

⬥each with their own IP prefix

■ has a unique “AS number”

85

Thus routing is hierarchical!
Three steps:
1. A packet is first routed to an “edge router” (often called

“gateway”) at the source AS---using the internal routing
protocol used by the source AS

2. Next the packet is routed to an edge router at the
destination AS---determined by the destination address
prefix---using BGP

3. The AS’s edge router then forwards the packet to its
ultimate destination---determined by the address suffix---
using the internal routing protocol used by the destination
AS

86

Routers (Layer-3 Switches)
Connects multiple LANs (subnets)
Two classes:
■ Edge or Border router: Resides at the edge of an

AS, and has two faces
⬥one faces outside to connect to one or more per edge

router in other ASs
⬥one faces inside, connecting to zero or more other

routers within the same AS

■ Interior router:
⬥has no connections to routers in other ASs

87

Internet Routing, observations
There are no special “government” routers
that route between ASs. Instead, each AS has
one or more “edge routers” that are connected
by interdomain links.
Two types:
■ Transit AS: forwards packets coming from one AS

to another AS
■ Stub AS: has only links to ASs higher in the

hierarchy and does not do any forwarding

88

Transit ASs

89

stub

transit

transit transit

(intradomain)

What’s an ISP?
An ISP (Internet Service Provider) is simply an
AS (or collection of ASs) that provides, to its
customers (which may be people or other ASs),
access to the “The Internet”
Provides one or more PoPs (Points of
Presence) where its customers can connect.

90

AS Tiers
Tier-1
■ no “upstream peers”
■ instead, peers with every other Tier-1 AS
■ “default-free” routing
■ “settlement-free connections”
Tier-3
■ a stub, connecting to one or more upstream ISPs
■ connects consumers to the Internet
Tier-2
■ everything in between, i.e., transit ASs that have upstream ASs,

default routes, etc.

91

Tiers

92

IXP: Internet Exchange Point

1

23

IP destination address in
arriving packet’s header

routing algorithm

local forwarding table
dest address output link
address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

Interplay between routing, forwarding
routing algorithm determines
end-end-path through network

forwarding table determines
local forwarding at this router

93

Model for Routing
A graph G(V,E), where vertices represent routers,
edges represent available links
■ For now, assume a unity weight associated with each link
Centralized “link state” algorithms for finding suitable
routes are straightforward
■ e.g., Dijkstra’s shortest path algorithm

Need distributed algorithms
■ Distance vector algorithm

94

Network Layer 95

Distance vector algorithm
 = estimate of least cost from x to y
■ x maintains distance vector

node x:
■ knows cost to each neighbor v:
■ maintains its neighbors’ distance vectors. For each

neighbor v, x maintains  

Network Layer 96

key idea:
❖ from time-to-time, each node sends its own

distance vector estimate to neighbors
❖ when x receives new DV estimate from neighbor, it

updates its own DV using B-F equation:

 for each y ∊ N

❖ under minor, natural conditions, the estimate Dx(y)
converge to the actual least cost dx(y)

Distance vector algorithm

Network Layer 97

iterative, asynchronous: each
local iteration caused by:

local link cost change

DV update message from
neighbor

distributed:
each node notifies
neighbors only when its DV
changes
■ neighbors then notify their

neighbors if necessary

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

each node:
Distance vector algorithm

Routing Loops?

In steady state, there should be no routing
loops
But steady state is rare. If routing tables are
not in sync, routing loops can occur.
To avoid problems, IP packets maintain a
maximum hop count (TTL) that is decreased
on every hop until 0 is reached, at which point
a packet is dropped.

98

Most Common Example

BGP (Border Gateway Protocol)
■ but instead of shortest path, uses various other

considerations to select which route is best!

Used as the most common interdomain
routing protocol or “Exterior Gateway
Protocol”, but is also used in ASs for
intradomain or “Interior Gateway” routing.

99

Why BGP?

Shortest path algorithms insufficient to handle
myriad of operational (e.g., loop handling),
economic, and political considerations
Policy categories (Caesar and Rexford):
■ business relationships
■ traffic engineering
■ scalability (improving stability, aggregation, etc.)
■ security

100

BGP Policy Implementation

policies at a router control
■ import policy: which routes (advertised by peers) are

accepted
■ decision process: which routes are used
■ export policy: which routes are advertised to peers

policies sometimes need to be negotiated and
implemented across multiple ISPs
■ BGP allows advertised routes to be tagged with

policies using the "community" attribute

101

Transport Layer

102

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Transport Layer vs. Network Layer
Logical communication
between hosts

IP: best-effort
delivery

LaptopY

LaptopX

Logical communication
between processes
 on hosts

TCP & UDP:
relies on &

enhances network
layer services

ProcessA

ProcessB

The Big Picture

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

Application

Network

Data Link

Physical

Router

104

Session Session

messages

segments

datagrams

frames

bits

TCP	or	UDP

IP

Ethernet	
or	WiFi

Transport services and protocols
Transport protocols run in end systems

▪ sender side: breaks app
messages into segments, passes to
network layer

▪ receiver side: reassembles
segments into messages, passes to
app layer

More than one transport protocol
available to apps

▪ Internet: TCP and UDP
application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical

105

Transport Layer Analogy
2	houses	(hosts),	each	has	12	kid	siblings	
Kids:	(applications)		

• write	letters	(messages)	to	cousins	
Parents:	(transport	layer	protocol)		

• gather	the	letters	(multiplexing)	
• put	them	in	addressed	envelopes	(segments)	
• give	them	to	the	postman	(network	layer)	
• get	letters	from	postman,	deliver	(demux)	to	kids

postal service
network layer

host host

Anne Lorenzo
… …

applications

applications

transport

layertransport

layer

Multiplexing

process

socket

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical
link

network

P3

107

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:

Demultiplexing

process

socket
transport

application

physical
link

network

P2P1

transport

application

physical

link

network

P4
transport

application

physical
link

network

P3

108

(Datagram(Segment(Message)))
Host gets IP Datagram with:
▪ source & dest IP addresses

▪ one transport-layer segment

▪ inside: source & dest port #

Host uses IP addr & port #s to
direct segment to appropriate
socket

109

ver length

32 bits

data

(variable length,
typically a TCP

or UDP segment)

16-bit identifier
header

 checksum
time to

live

head.
len

type of
service

flgs fragment
 offset

upper
 layer

options (if any)

32 bit source IP address

IP	Datagram

32 bit destination IP address

source port # dest port #

application data

(payload)

other header fields

TCP/UDP segment format

Dear James,

Internet transport-layer protocols
Transport Control Protocol (TCP)
“Trusty Connection Protocol” ??
• reliable, in-order delivery
• congestion control
• flow control
• connection setup

User Datagram Protocol (UDP)
“Unreliable Datagram Protocol”
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

 Services not available:
■ delay guarantees
■ bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

logical end-end transport

110

UDP: User Datagram Protocol [RFC 768]

❖“no frills,” “bare bones” Internet transport protocol
❖“best effort” service, UDP segments may be:

■ lost
■ delivered out-of-order, duplicated to app

❖ connectionless:
■ no handshaking between UDP sender, receiver
■ each UDP segment handled independently of others

❖ reliable transfer still possible:
▪ add reliability at application layer
▪ application-specific error recovery!

111

I was gonna tell you guys a joke about UDP…
But you might not get it

I was you guys about UDP might not

Connectionless demultiplexing

Host receives UDP segment:
▪ checks destination port # in segment
▪ directs UDP segment to socket with that port #

112

source port # dest port #

application data

(payload)

length

UDP segment format

Dear James,

32 bits

length (in bytes)
of UDP segment,
including header

checksum

113

Connectionless demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical
link

network

P4

DatagramSocket	
mySocket1	=	new	
DatagramSocket	(5775);	

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

IP datagrams w/ same dest port #, but different source IP addr or port #s
→ directed to same socket at dest

DatagramSocket	
mySocket2	=	new	
DatagramSocket	(9157);	

DatagramSocket	
sererSocket	=	new	
DatagramSocket	(6428);	

Is there anything good about UDP?

114

Speed:
❖ no connection establishment (which can add delay)
❖ no congestion control: UDP can blast away as fast as desired

Simplicity:
❖ no connection state at sender, receiver
❖ small header size

Target Users:
❖ streaming multimedia apps (loss tolerant, rate sensitive)
❖ DNS

Connection-oriented demux

❖TCP socket identified by
4-tuple:
▪ source IP address
▪ source port number
▪ dest IP address
▪ dest port number

❖demux: receiver uses all
four values to direct
segment to appropriate
socket

❖ server host may support
many simultaneous TCP
sockets:
▪ each socket identified by

its own 4-tuple
❖ web servers have

different sockets for each
connecting client
▪ non-persistent HTTP will

have different socket for
each request

115

Connection-oriented demux: example

transport

application

physical
link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80three segments:

• all destined to IP address: B, dest port: 80
• demultiplexed to different sockets

server: IP
address B

116

TCP: Transmission Control Protocol

• Reliable,	ordered,	2-way	byte-stream	communication	
• Many	applications	demand	reliable,	ordered	delivery.	
They	should	not	have	to	implement	their	own	
protocol.	

• A	standard,	adaptive	protocol	that	delivers	good-
enough	performance	and	deals	well	with	congestion	
• E.g.,	all	web	traffic	travels	over	TCP/IP

117

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum

FSRPAUhead
len

not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

118

TCP Packets

• Each packet carries a sequence number
⬥Initial number chosen randomly
⬥Number incremented by the data length

• Each packet carries an acknowledgment
⬥ Can acknowledge a sequence of bytes by ack’ing latest

byte received

• Reliable transport is implemented using these
identifiers

119

TCP Connections

• TCP is connection oriented
• A connection is initiated with a

three-way handshake
• Three-way handshake agrees on

initial sequence numbers
• Takes 3 packets, 1.5 RTT (Round

Trip Time)

SYN

SYN, ACK of SYN

ACK of SYN

120

SYN = Synchronize
ACK = Acknowledgement

I would tell you a joke about TCP... If only to be acknowledged 😢

TCP Handshakes

The three-way handshake establishes common
state on both sides of a connection

■ Both sides will have seen one packet from the
other side, thus know what the first seqno ought
to be

■ SYN-ACK also typically carries a new port for the
server

■ Both sides will know that the other side is ready to
receive

121

Typical TCP Usage

• 3 round-trips to set up a
connection, send a data
packet, receive a response,
tear down connection

• FINs work (mostly) like SYNs
to tear down connection

⬥ Need to wait after a FIN for
straggling packets

SYN

SYN, ACK of SYN

ACK of SYNDATA

DATA, ACK

FIN, ACK
ACK

122

Reliable transport

• TCP keeps a copy of all sent,
but unacknowledged packets

• If acknowledgment does not
arrive within a “send timeout”
period, packet is resent

• Send timeout adjusts to the
round-trip delay

• ACKs can be piggybacked

123

DATA,seq=17,len=2

ACK 19

DATA,seq=19,len=2

DATA, seq=19,len=2

Send timeout

ACK 21
Here's a joke about TCP.
Did you get it?
Did you get it?
Did you get it?
Did you get it?

TCP timeouts

What is a good timeout period ?
■ Want improved throughput w/o unnecessary transmissions

à Timeout is thus a function of RTT and variance

AverageRTT := (1 - α) AverageRTT + α LatestRTT
AverageVar := (1 - β) AverageVar + β LatestVar
where LatestRTT = (ack_receive_time – send_time),
 LatestVar = |LatestRTT – AverageRTT|,
 α = 1/8, β = 1/4 typically.
Timeout := AverageRTT + 4*AverageVar

124

TCP Windows

Multiple outstanding packets can increase throughput
125

How much data “fits” in a pipe?

Suppose the b/w is b bytes / second
Suppose the RTT is r seconds
Suppose an ACK is a small message
■ you can send b * r bytes before receiving an ACK

for the first byte

But b/w and RTT are both variable…

126

TCP Windows

• Can have more than one
packet in transit

• Especially over fat pipes,
e.g. satellite connection

• Need to keep track of all
packets within the window

• Need to adjust window size

DATA, seq=16DATA, seq=17DATA, seq=18DATA, seq=19

ACK 17

ACK 18

ACK 19

ACK 20

127

TCP Windows and Fast Retransmit

• When receiver detects a lost
packet (i.e. a hole in the
seqno space), it acks the last
seqno it successfully
received

• Sender can quickly detect
that a loss occurred without
waiting for a timeout

128

DATA, seq=16DATA, seq=17DATA, seq=18DATA, seq=19

ACK 17

ACK 20

ACK 17
DATA, seq=17

TCP Congestion Control
• TCP typically increases its window size by one MTU

(Maximum Transmission Unit) every RTT
• It typically halves the window size when a packet drop

occurs
• A packet drop is evident from the acknowledgments

• Therefore, it will slowly build up to the max
bandwidth, and hover around the max

• It doesn’t achieve the max possible though
• Instead, it shares the b/w well with other TCP connections

• This linear-increase, exponential backoff in the face of
congestion is termed TCP-friendliness

129

TCP Window Size

• Linear increase
• Exponential backoff

(Assumes no other
losses in network
except those due to
b/w)

Time

B
an

dw
id

th

Max Bandwidth

130

TCP Slow Start

❖ Linear increase:
• takes a long time to build up a window size that

matches the link bandwidth*delay
• Most file transactions end before that happens
• TCP spends a lot of time with small windows, never

reaching a sufficiently large window size
❖ Better: Exponential increase
• allow TCP to build up to a large window size initially

by increasing the window size linearly for each ack
received

• Effectively doubling the window size until first loss

131

TCP w/ initial phase exponential

(Assumes no other
losses in network
except those due
to b/w)

Time

B
an

dw
id

th

Max Bandwidth

132

TCP Summary

Reliable ordered message delivery
⬥Connection oriented, 3-way handshake

Transmission window for better throughput
⬥Timeouts based on link parameters

Congestion control
⬥Linear increase, exponential backoff

Fast adaptation
⬥Exponential increase in the initial phase

133

Application Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

134

DNS: domain name system
people: many identifiers:

■ SSN, name, passport #
Internet hosts, routers:

■ IP address (32 bit) -
used for addressing
datagrams

■ “name”, e.g.,
www.yahoo.com - used
by humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
■ note: core Internet function,

implemented as application-
layer protocol

■ complexity at network’s “edge”

135

DNS: services, structure
why not centralize DNS?

single point of failure

traffic volume
distant centralized database

maintenance

DNS services
hostname to IP address
translation
host aliasing
■ canonical, alias names

mail server aliasing
load distribution
■ replicated Web servers:

many IP addresses
correspond to one
name

A: doesn’t scale!

136

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

cornell.edu
DNS servers

utexas.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
client queries root server to find com DNS server

client queries .com DNS server to get amazon.com DNS server

client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

137

DNS: root name servers
contacted by local name server that can not resolve name

root name server:
■ contacts authoritative name server if name mapping not known
■ gets mapping
■ returns mapping to local name server

 13 root name
“servers” worldwide

a. Verisign, Los Angeles CA
 (5 other sites)
b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

138

TLD, authoritative servers
top-level domain (TLD) servers:

■ responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

■ Network Solutions maintains servers for .com TLD
■ Educause for .edu TLD

authoritative DNS servers:
■ organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
■ can be maintained by organization or service provider

139

Local DNS name server
does not strictly belong to hierarchy
each ISP (residential ISP, company, university)
has one
■ also called “default name server”

when host makes DNS query, query is sent to
its local DNS server
■ has local cache of recent name-to-address

translation pairs (but may be out of date!)
■ acts as proxy, forwards query into hierarchy

140

requesting host
cs.utexas.edu

irnerio.cs.cornell.edu

root DNS server

local DNS server
dns.utexas.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.cornell.edu

78

TLD DNS server

DNS name  
resolution example

host at cs.utexas.edu wants IP
address for
irnerio.cs.cornell.edu

iterated query:
❖ contacted server replies

with name of server to
contact

❖ “I don’t know this name,
but ask this server”

141

45

6

3

recursive query:
❖ puts burden of name

resolution on
contacted name
server

❖ heavy load at upper
levels of hierarchy?

requesting host
cs.utexas.edu

irnerio.cs.cornell.edu

root DNS server

local DNS server
dns.utexas.edu

1

2
7

authoritative DNS server
dns.cs.cornell.edu

8

DNS name  
resolution example

TLD DNS
server

142

DNS: caching, updating records
❖ once (any) name server learns mapping, it caches

mapping
■ cache entries timeout (disappear) after some time (TTL)
■ TLD servers typically cached in local name servers

⬥ thus root name servers not often visited

❖ cached entries may be out-of-date (best effort name-
to-address translation!)
■ if name host changes IP address, may not be known

Internet-wide until all TTLs expire
❖ update/notify mechanisms proposed IETF standard

■ RFC 2136

143

Attacking DNS
DDoS attacks
❖ Bombard root servers with

traffic
■ Not successful to date

■ Traffic Filtering

■ Local DNS servers cache IPs
of TLD servers, allowing root
server bypass

❖ Bombard TLD servers
■ Potentially more dangerous

Redirect attacks
❖ Man-in-middle

▪ Intercept queries
❖ DNS poisoning

▪ Send bogus replies to DNS
server, which caches

Exploit DNS for DDoS
❖ Send queries with

spoofed source address:
target IP

❖ Requires amplification

144

145

Sockets
socket: door between application process and end-end-

transport protocol
• sending process shoves message out door
• sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving
process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical

link

network

process
socket

Socket programming

Two socket types for two transport services:
• UDP: unreliable datagram
• TCP: reliable, byte stream-oriented

146

Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters to

uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its

screen

Socket programming with UDP

UDP: no “connection” between client & server
▪ no handshaking before sending data
▪ sender explicitly attaches IP destination address and

port # to each packet
▪ receiver extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

147

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via 
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying  
client address,
port number

148

server (running on serverIP) client

149

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,
 SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),
 (serverName, serverPort))

modifiedMessage, serverAddress =
 clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string and
close socket

read reply characters from
socket into string

150

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = message.decode().upper()
 serverSocket.sendto(modifiedMessage.encode(),
 clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string back
to this client

Socket programming with TCP

client must contact server
▪ server process must first be

running
▪ server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
▪ Creating TCP socket,

specifying IP address, port
number of server process

▪ when client creates socket:
client TCP establishes
connection to server TCP

▪ when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
• allows server to talk with

multiple clients
• source port numbers used

to distinguish clients (more
in Chap 3)

151

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

152

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

153

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

154

Example app: TCP server

 from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:
 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()
 capitalizedSentence = sentence.upper()
 connectionSocket.send(capitalizedSentence.
 encode())
 connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

