Advanced Synchronization
and Deadlock

A house of cards?

@ Locks + CV/signal a great way to regulate
access to a single shared object...

@ ..but general multi-threaded programs touch
mu,&i,?i.a shared objects

@ How can we atomically modify multiple objects
to maintain

o Safety: prevent applications from seeing
inconsistent states

0 Liveness: avoid deadlock

» a cycle of threads forever stuck waiting for one
another

Deadlock

@ A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Produceri() §
emptyBuffer.acquire()

producerMutexLock.acquire()

;

Producer?() §
producerMutexLock.acquire()
emptyBuffer.acquire()

}.

Deadlock

@ A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive

locking

waiting
for unlock
Sz

lock.Ac'qui_re()

lockl.acquire()

lock2.acquire()

while (must wait) §
cv.wait(&lock2)

}

lock2.release()

lockl.release()

lockl.acquire()

lock2.acquire()

cv.signal()

lock2.release()

lockl.release()

Deadlock

@ A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

:él :él %2

Nested waiting

waiting lock.f«cquire()

for unlock !
S 2 v S 2

lock.Acquire() waiting for signal

Deadlock

@ A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

:él :él %2

Nested waiting

waiting lock.f«cquire()

for unlock !
S 2 v S 2

lock.Acquire() waiting for signal

Dining Philosophers

@ N philosophers; N plates; N chopsticks
@ If all philosophers grab right chopstick

0 deadlock!

Necessary conditions
for deadlock

& Deadlock only if the all hold Not sufficient in general

o Bounded resources

> A finite number of threads can use
a resource; resources are finite

waiting for

o No preemption

» the resource is mine, MINE! (until I
release it)

o Wait while holding

» holds one resource while waiting
for another

o Circular waiting

» T; waits for T;;,; and holds a
resource requested by T,

» sufficient if one instance of each
resource

Preventing deadlock

@ Remove one of the necessary conditions

0 Provide sufficient resources
> Removes "Bounded resources”
0 Preempt resources
» Removes "No preemption”
o Abort requests
» Removes "Wait while holding”
o Atomically acquire all resources
> Removes "Wait while holding”

o Lock ordering

» Removes “Circular waiting”

Lock ordering

@ A program code convention
o Developers get together, have lunch, plan lock

order

0 Usually reflects static assumptions about the

structure of data

> lock items in a list in order —what if order changes?

o Nothing at compile time or run time prevents
violating this convention!
» Active research on making it better
v Finding locking bugs
v Automatically locking things properly

v Transactional memory

Avoiding Deadlock:
The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Sum of maximum resources
needs can exceed the total
available resources

o if there exists a schedule of
loan fulfillments such that

» all clients receive their maximal
loan

» build their house

» pay back all the loan

@ More efficient than acquiring
atomically all resources

Living dangerously:
Safe, Unsafe, Deadlocked

Unsafe

A system's trajectory
through its state space

@ Safe: For any possible set of resource

requests, there exists one safe schedule
of processing requests that succeeds in
granting all pending and future requests

o no deadlock as long as system can
enforce safe schedule

Unsafe: There exists a set of (pending
and future) resource requests that leads
to a deadlock, for any schedule in which
requests are processed

0 unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

The Bankers books

& Maxi; = max amount of units of resource R; needed by P;

o MaxClaim; = Z Maxij
i

@ Allocj; = current allocation of R held by P;

o HasNow; = Z Allocjj
j=1

@ Availj = number of units of Rj available

@ A request by Pk is safe if there is schedule P;, P,..Pn such
that, for all P;, assuming the request is granted,
ki |
MaxClaimi-HasNow; < Avail + Z HasNow;
il

An Example

@ 5 processes, 4 resources

Max Alloc Avail
R:i Rz R3 R4 Ri Rz R3 R4 Ri Rz Rz Ry
P BOBOR D P 0k Sk e P 0
o Ay P2 il dlils 40 4O
P; 2 3 5 6 P; 1 3 5 3
P, BORNEENERND P, Gl dbe e
Ps O 6 5 6 Ps 0 0 1 4

@ Is this a safe state?

An Example

@ 5 processes, 4 resources

M- et PAIOC Avail MaxRequest
2 K2 Rs Rq Ri RZ™RwRs Ri Rz R3 Ry Ri Rz R3 Ry
o0 py S i o k™ ey o p B S
[r. P, GO \ P, Vi B
% P; IERSEREERE ~~ 0. [} P 1 0 0 3
p, Bl el aiio p, SpbYgn e u gy p, KSRGS
0 6 5 6 Ps 0 0 1 oo™ D0 6 4 2

@ Is this a safe state? ==, 1' ‘“ Pa, p3' Ps §

o While safe sequence does not d all ées:

» Is there a P; such that MaxRequesti < Avail?

— if no, exit with unsafe

— if yes, add P; to the sequence and set Avail = Avail + HasNow;

o Exit with safe

An Example

@ 5 processes, 4 resources

P
P2
P3
Ps
Ps

D

Max Alloc Avail MaxRequest
R1 Rz R3 R4 Rl Rz R3 R4 Rl Rz R3 R4 Rl RZ R3 R4
efollefll it P (sl ke i 5 2 0 PP O OO O
FRTRSRG R P B E 8
R SEnRb P ke e i € P MELELC
O 6if 52 P, 0 6 3 2 P OOZ20O
0 6 5 6 Ps (e il il it P O 6 4 2
P2 want to change its allocation to o 4 2 o
Safe?

An Example

@ 5 processes, 4 resources

P
P2
P3
Ps
Ps

D

Max Alloc Avail MaxRequest
R1 Rz R3 R4 Rl Rz R3 R4 Rl Rz R3 R4 Rl RZ R3 R4
efollefll it P (sl ke i 22 0 0 PP O OO O
FRTRSRG P2|O0 4 2 O P. MEiE i 8 8
R SEnRb P ke e i € Ps iR i L0 8
O 6if 52 P, 0 6 3 2 P, 0 0 2 0
0 6 5 6 Ps (e il il it Ps 0 6 4 2
P2 want to change its allocation to o 4 2 o
Safe?

Detecting Deadlock

@ 5 processes, 3 resources. We no longer know Max.

Alloc Avail Pending

Rt R Rs Ri Rz Rs3 Ri Rz R;

P gl visbes wil) 0.2 0 &0 P a8 S0
P2 e st witd] P, gt Sl Sl
P3 gt sililoe st Ps sl Sllts S
Pi e siblive stk P, aaE S8HF S8
Ps s slee vt Ps Sl Sl Cdd

@ Given the set of pending requests, is there a safe sequence?

0 If no, deadlock

Detecting Deadlock

@ 5 processes, 3 resources. We no longer know Max.

P
P2
Ps
P,
Ps

O DM w O

Alloc
R, Rj3

|

O - O O

0

0]
3
1
2

R,

0

Avail
R, R3

0

0

P
P2
Ps3
P,
Ps

Pending

R:
0

O stmthon S Eis SN

Rz Rs

@ Given the set of pending requests, is there a safe sequence?

0 If no, deadlock

@ Can we avoid deadlock by delaying granting requests?

0 Deadlock triggered when request formulated, not granted

