
Advanced Synchronization
and Deadlock

A house of cards?

Locks + CV/signal a great way to regulate
access to a single shared object...

...but general multi-threaded programs touch
multiple shared objects

How can we atomically modify multiple objects
to maintain

Safety: prevent applications from seeing
inconsistent states

Liveness: avoid deadlock

a cycle of threads forever stuck waiting for one
another

Deadlock

A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Producer1() {
emptyBuffer.acquire()
producerMutexLock.acquire()
:

}

Producer2() {

emptyBuffer.acquire()
producerMutexLock.acquire()

:
}

Deadlock

A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

lock.Acquire()

lock.Acquire()

waiting

for unlock

waiting

for unlock

1

2

S1

S2

lock1.acquire()
…
lock2.acquire()

while (must wait) {

cv.wait(&lock2)
}

lock2.release()
…
lock1.release()

…

lock1.acquire()

lock2.acquire()

cv.signal()
lock2.release()

lock1.release()

…

…

…

Deadlock

A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

lock.Acquire()

lock.Acquire()

waiting

for unlock

waiting

for unlock

1

2

S1

S2

Nested waiting

lock.Acquire()

lock.Acquire() waiting

for unlock

waiting for signal

1 2

S1

S2

Deadlock

A cycle of waiting among a set of threads, where
each thread is waiting for some other thread in
the cycle to take some action

Mutually recursive
locking

lock.Acquire()

lock.Acquire()

waiting

for unlock

waiting

for unlock

1

2

S1

S2

Nested waiting

lock.Acquire()

lock.Acquire() waiting

for unlock

waiting for signal

1 2

S1

S2

Dining Philosophers

N philosophers; N plates; N chopsticks

If all philosophers grab right chopstick

deadlock!

Deadlock only if the all hold

Bounded resources

A finite number of threads can use
a resource; resources are finite

No preemption

the resource is mine, MINE! (until I
release it)

Wait while holding

holds one resource while waiting
for another

Circular waiting

Ti waits for Ti+1 and holds a
resource requested by Ti-1

sufficient if one instance of each
resource

Not sufficient in general

P1

P0

P2P3

P4

waiting for

owned

by

Necessary conditions
for deadlock

cycle

Preventing deadlock

Remove one of the necessary conditions

Provide sufficient resources

Removes “Bounded resources”
Preempt resources

Removes “No preemption”

Abort requests

Removes “Wait while holding”

Atomically acquire all resources

Removes “Wait while holding”

Lock ordering

Removes “Circular waiting”

Lock ordering
A program code convention

Developers get together, have lunch, plan lock
order

Nothing at compile time or run time prevents
violating this convention!

Active research on making it better

Finding locking bugs

Automatically locking things properly

Transactional memory

Usually reflects static assumptions about the
structure of data

lock items in a list in order —what if order changes?

Avoiding Deadlock:
The Banker’s Algorithm

Sum of maximum resources
needs can exceed the total
available resources

if there exists a schedule of
loan fulfillments such that

all clients receive their maximal
loan

build their house

pay back all the loan

More efficient than acquiring
atomically all resources

E.W. Dijkstra & N. Habermann

Living dangerously:
Safe, Unsafe, Deadlocked

Safe: For any possible set of resource
requests, there exists one safe schedule
of processing requests that succeeds in
granting all pending and future requests

no deadlock as long as system can
enforce safe schedule

Unsafe: There exists a set of (pending
and future) resource requests that leads
to a deadlock, for any schedule in which
requests are processed

unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

Safe

Deadlock

Unsafe

A system’s trajectory

through its state space

The Banker’s books
Maxij = max amount of units of resource Rj needed by Pi

MaxClaimi = Maxij

Allocij = current allocation of Rj held by Pi

HasNowi = Allocij

Availj = number of units of Rj available

A request by Pk is safe if there is schedule P1, P2,...Pn such
that, for all Pi, assuming the request is granted,

mX

j=1

mX

j=1

MaxClaimi-HasNowi ≤ Avail + HasNowi
i�1X

j=1

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

An Example
5 processes, 4 resources

Is this a safe state?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

-
0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

MaxRequest

While safe sequence does not include all processes:

Is there a Pi such that MaxRequesti ≤ Avail?

if no, exit with unsafe

if yes, add Pi to the sequence and set Avail = Avail + HasNowi

Exit with safe

P1, P4, P2, P3, P5

An Example
5 processes, 4 resources

P2 want to change its allocation to

Safe?

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Avail
R1 R2 R3 R4

0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P
2P
3P
4P
5

R1 R2 R3 R4

MaxRequest

0 4 2 0

An Example
5 processes, 4 resources

P2 want to change its allocation to

Safe?

0 0 1 2
0 4 2 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Alloc

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

2 1 0 0

Avail
R1 R2 R3 R4

0 0 0 0
1 3 3 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

MaxRequest

0 4 2 0

Detecting Deadlock
5 processes, 3 resources. We no longer know Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Alloc

0 0 0

Avail
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

Detecting Deadlock
5 processes, 3 resources. We no longer know Max.

Given the set of pending requests, is there a safe sequence?

If no, deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Alloc

0 0 0

Avail
R1 R2 R3

0 0 0
2 0 2
0 0 1
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

Can we avoid deadlock by delaying granting requests?
Deadlock triggered when request formulated, not granted

