
Condi&on	Variables	
and	Monitors

CS	4410	
Opera&ng	Systems	

Spring	2017	
Cornell	UniversityLorenzo	Alvisi	

Anne	Bracy	

See:	Ch	5&6	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.

2

SemaphoresLocks Condi&on	Variables

Mul&ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc&ons
ATOMIC INSTRUCTIONS

SYNCHRONIZATION OBJECTS

CONCURRENT APPLICATIONS
. . .

Monitors

Recall:	Too	Much	Milk	SoluLon

3

Pros:	
• Safe!	
• Live!	
• Achieved	without	any	special	support

Jack	
BlueNote	=	1;	
while	(PinkNote	==	1)	{	

;	
}	
if	(milk	==	0)	{	

milk++;	
}	

}	
BlueNote	=	0;

Jill	
PinkNote	=	1;	
if	(BlueNote	==	0)	{	
if	(milk	==	0)	{	
milk++;	

}	
}	
PinkNote	=	0;

Recall:	Too	Much	Milk	SoluLon

4

Cons:	
•	Complicated:	complicated	correctness	proof	
•	Inefficient:	BUSY-WAITING!!!	
•	Asymmetric:	hard	to	scale	to	many	threads	
•	Incorrect(?)	:	instruc&on	reordering	can	
produce	surprising	results

Jack	
BlueNote	=	1;	
while	(PinkNote	==	1)	{	

;	
}	
if	(milk	==	0)	{	

milk++;	
}	

}	
BlueNote	=	0;

Jill	
PinkNote	=	1;	
if	(BlueNote	==	0)	{	
if	(milk	==	0)	{	
milk++;	

}	
}	
PinkNote	=	0;

5

Mul&ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc3ons

ATOMIC INSTRUCTIONS

SYNCHRONIZATION OBJECTS

CONCURRENT APPLICATIONS
. . .

SemaphoresLocks Condi&on	Variables Monitors

6

Mul&ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc&ons
ATOMIC INSTRUCTIONS

SYNCHRONIZATION OBJECTS

CONCURRENT APPLICATIONS
. . .

SemaphoresLocks Condi&on	Variables Monitors

7

Recall:	Poem	Wall	SoluLon

void	write_poem(poem_t	*p)	{	
P(enoughRoom);	//space?	
P(mutex_prod);	

		buf[in]	=	p;	
		in	=	(in+1)%N;	

V(mutex_prod);	
V(poemThere);	//item!	

}

poem_t	*get_poem()	{	
		P(poemThere);	//need item		
		P(mutex_cons);	
		poem_t	*p	=	buf[out];	
		out	=	(out+1)%N;	
		V(mutex_cons);	

V(enoughRoom);	//	space!	
		return	p;	
}

Shared:	
int	in,	out,		
poem_t	*buf[N];	
Semaphore	mutex_prod(1),	mutex_cons(1);	
Semaphore	enoughRoom(N),	poemThere(0);

Pros:	
• Live	&	Safe	&	Correct	
• No	Busy	Wai&ng!	(that	we	see)	
• Scales	nicely

8

Recall:	Poem	Wall	SoluLon

Cons:	
• S&ll	seems	complicated:	is	this	correct?		
• Not	so	readable	
• Easy	to	introduce	bugs

void	write_poem(poem_t	*p)	{	
P(enoughRoom);	//space?	
P(mutex_prod);	

		buf[in]	=	p;	
		in	=	(in+1)%N;	

V(mutex_prod);	
V(poemThere);	//item!	

}

poem_t	*get_poem()	{	
		P(poemThere);	//need item		
		P(mutex_cons);	
		poem_t	*p	=	buf[out];	
		out	=	(out+1)%N;	
		V(mutex_cons);	

V(enoughRoom);	//	space!	
		return	p;	
}

Shared:	
int	in,	out,		
poem_t	*buf[N];	
Semaphore	mutex_prod(1),	mutex_cons(1);	
Semaphore	enoughRoom(N),	poemThere(0);

Classic	Semaphore	Mistakes

9

P(S)	
CS	
P(S)

I

V(S)	
CS	
V(S)

P(S)	
CS

J

K

P(S)	
if(x)	return;	
CS	
V(S)

L

	I	stuck	on	2nd	P().	Subsequent	
processes	freeze	up	on	1st	P().

Undermines	mutex:		
•	J	doesn’t	get	permission	via	P()		
•	“extra”	V()s	allow	other	processes	
into	the	CS	inappropriately

Next	call	to	P()	will	freeze	up.	
Confusing	because	the	other	process	
could	be	correct	but	hangs	when	you	
use	a	debugger	to	look	at	its	state!

Conditional	code	can	change	code	
flow	in	the	CS.	Caused	by	code	

updates	(bug	fixes,	etc.)	by	someone	
other	than	original	author	of	code.

⬅typo

⬅typo

⬅omission

Semaphores	Considered	Harmful

10

“During	system	concep&on	it	transpired	that	we	
used	the	semaphores	in	two	completely	different	
ways.	The	difference	is	so	marked	that,	looking	
back,	one	wonders	whether	it	was	really	fair	to	
present	the	two	ways	as	uses	of	the	very	same	
primi&ves.	On	the	one	hand,	we	have	the	
semaphores	used	for	mutual	exclusion,	on	the	
other	hand,	the	private	semaphores.”		

—	Dijkstra	“The	structure	of	the	’THE’-Mul&programming	System”	
Communica&ons	of	the	ACM	v.	11	n.	5	May	1968.

Semaphores	NOT	to	the	rescue!

11

Semaphores	are	“low-level”	primi&ves.	Small	errors:	
• 	Easily	bring	system	to	grinding	halt	
• 	Very	difficult	to	debug	

Two	usage	models:	
• 	Mutual	exclusion:	“real”	abstrac&on	is	a	cri&cal	sec&on	
• 	Communica3on:	threads	use	semaphores	to	
communicate	(e.g.,	bounded	buffer	example)	

Simplifica3on:	Provide	concurrency	support	in	compiler	
➙Enter	Condi&on	Variables	&	Monitors

12

Mul&ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc&ons
ATOMIC INSTRUCTIONS

SYNCHRONIZATION OBJECTS

CONCURRENT APPLICATIONS
. . .

SemaphoresLocks Condi3on	Variables Monitors

Condi&on	Variables

13

A	mechanism	to	wait	for	events	
3	opera&ons	on	Condi&on	Variable		Condition	x;	
•	x.wait():	sleep until woken up (could wake up on your own)	
• 	x.signal():	wake at least one process waiting on
 condition (if there is one). No history associated with signal.
• 	x.broadcast():	wake	all	processes	wai&ng	on		
							condition (useful for resource manager)

!! NOT the same thing as UNIX wait and UNIX signal !!

14

Semaphores												vs.					CondiLon	Variables

void	write_poem(poem_t	*p)	{	
P(enoughRoom);	//	space?	
P(mutex_prod);	

		buf[in]	=	p;	
		in	=	(in+1)%N;	

V(mutex_prod);	
V(poemThere);	//	poem!	

}

Shared:	
int	in,	out,	buf[N];	
Semaphore	mutex_prod(1);	
Semaphore	enoughRoom(N),	
										poemThere(0);

void	write_poem(poem_t	*p)	{	
while	(nPoems	==	N)	
	enoughRoom.wait();	

P(mutex_prod);	
		buf[in]	=	p;	
		in	=	(in+1)%N;	
		nPoems++;	

V(mutex_prod);	
poemThere.signal();	

}

Shared:	
int	in,	out,	nPoems	=	0;	
poem_t	*buf[N];	
Semaphore	mutex_prod(1);	
Condition	enoughRoom,	
										poemThere;

CV	Observa&ons?	
•	State	(nPoems)	is	external	
•	Code	is	self	documen&ng

This	example	is		
not	complete!

(ignore the mutexes for now)

CondiLon	Variables	Live	in	a	Monitor

15

1.	Shared	Private	Data	
• the	resource	
• can	only	be	accessed	from	in	the	monitor	

2.	Procedures	opera&ng	on	data	
• gateway	to	the	resource	
• can	only	act	on	data	local	to	the	monitor	

3.	Synchroniza&on	primi&ves	
• among	threads	that	access	the	procedures	

Abstract	Data	Type	for	handling	
shared	resources,	comprising:

[Hoare 1974]

One	Thread	at	a	Time	in	the	Monitor!

16

Monitor	SemanLcs	guarantee	mutual	exclusion

17

Only	one	thread	can	execute	monitor	procedure	at	
any	&me	(aka	“in	the	monitor”)

Monitor	monitor_name	
{	
			// shared variable declarations	
					
			procedure	P1()	{	
			}	

			procedure	P2()	{	
			}	
			.	
			.	
			procedure	PN()	{	
			}	

			initialization_code()	{	
			}	
}	

Monitor	poem_wall	
{	
		int	in=0,	out=0,	nPoems=0;	
		poem_t	*buf[N];	
		Condition	enoughRoom,	
												poemThere;	

					
			get_poem()	{	
			}	

			write_poem()	{	
			}	

}	

in	the	abstract for	example:

only one operation
can execute at a time

can only access
shared data, CVs via
a monitor procedure

Types	of	Wait	Queues

18

Monitors	have	two	kinds	of	“wait”	queues	
• 	Entry	to	the	monitor:	has	a	queue	of	threads	
wai&ng	to	obtain	mutual	exclusion	&	enter	

• 	Condi3on	variables:	each	condi&on	variable	has	
a	queue	of	threads	wai&ng	on	the	associated	
condi&on

Using	CondiLon	Variables

19

You must hold the monitor lock to call these operations.

	To	wait	for	some	condi3on:	
	 while	not	some_predicate():	
	 	 CV.wait()	

• 	Atomically	releases	monitor	lock	&	yields	processor	
• 	as	CV.wait()	returns,	lock	automa&cally	reacquired	

		
When	the	condi3on	becomes	sa3sfied:	
	 	 CV.broadcast():	 wakes	up	all	threads	
	 	 CV.signal():				wakes	up	at	least	one	thread

CV semantics:
Brinch Hansen vs. Hoare

The condition variables we have defined obey
Brinch Hansen (or Mesa) semantics

signaled thread is moved to ready list, but mot
guaranteed to run right away

Hoare proposes an alternative semantics

signaling thread is suspended and, atomically,
ownership of the lock is passed to one of the
waiting threads, whose execution is immediately
resumed

What are the
implications?

Brinch Hansen/Mesa

signal() and broadcast() are hints

adding them affects
performance, never safety

Shared state must be checked in a
loop (could have changed)

robust to spurious wakeups

Simple implementation

no special code for thread
scheduling or acquiring lock

Used in most systems

Sponsored by a Turing Award

Butler Lampson

 Hoare

Signaling is atomic with the
resumption of waiting thread

shared state cannot change
before waiting thread is resumed

Shared state can be checked using
an if statement

Makes it easier to prove liveness

Tricky to implement

Used in most books

Sponsored by a Turing Award

Tony Hoare

Which	is	Mesa/Hansen?	Which	is	Hoare?	

22wikipedia.org

Language	Support

23

Can	be	embedded	in	programming	language:		
• 	Compiler	adds	synchroniza&on	code,	enforced	at	
run&me	

• 	Mesa/Cedar	from	Xerox	PARC	
• 	Java:	synchronized,	wait,	no&fy,	no&fyall	
• 	C#:	lock,	wait	(with	&meouts)	,	pulse,	pulseall	
• 	Python:	acquire,	release,	wait,	no&fy,	no&fyAll	

24

Complete	Poem	Wall

void	write_poem(int	item)	{	
while	(nPoems	==	N)	
	enoughRoom.wait();	

P(mutex_prod);	
		buf[in]	=	item;	
		in	=	(in+1)%N;	
		nPoems++;	

V(mutex_prod);	
poemThere.signal();	

}

Shared:	
int	in,	out,	buf[N];	
int	nPoems	=	0;	
Semaphore	mutex_prod(1);	
Condition	enoughRoom,	
										poemThere;

Monitor	poem_wall	{	
	lock	mlock;	

		poem_t	*buf[N];	
		int	in=0,	out=0,	nPoems=0;	
		condition	nuffRoom,poemsThere;	

		void	write_poem(poem_t	*p)	{	
				mlock.acquire();	

	 			while(nPoems	==	N)	
	 						nuffRoom.wait();	
	 			buf[in]	=	p;	
	 			in	=	(in+1)%N;	
	 			nPoems++;	
					signal(not_empty);	
				mlock.release();	

				}	
}

100%	MonitorThis	example	is		
not	complete!

mutexes achieved via monitor lock

25

What	if	no	thread	is	wai&ng	
when	signal()	called?

Then	signal	is	a	nop.			
Very	different	from	calling	
V()	on	a	semaphore	–	
semaphores	remember	
how	many	&mes	V()	was	
called!

Complete	Poem	Wall:	a	closer	look
Monitor	poem_wall	{	
	lock	mlock;	

		poem_t	*buf[N];	
		int	in=0,	out=0,	nPoems=0;	
		condition	nuffRoom,poemsThere;	

		void	write_poem(poem_t	*p)	{	
				mlock.acquire();	

	 			while(nPoems	==	N)	
	 						nuffRoom.wait();	
	 			buf[in]	=	p;	
	 			in	=	(in+1)%N;	
	 			nPoems++;	
					signal(not_empty);	
				mlock.release();	

				}	
}

CondiLon	Variables	vs.	Semaphores

26

Access	to	monitor	is	controlled	by	a	lock.	To	call	wait	or	
signal,	thread	must	be	in	monitor	(=	have	lock).	
Wait	vs.	P:	

• 	Semaphore	P()	blocks	thread	only	if	value	<	1	
• 	wait	always	blocks	&	gives	up	the	monitor	lock	

Signal	vs.	V:	causes	wai&ng	thread	to	wake	up	
• 	V()	increments	➙	future	threads	don't	wait	on	P()	
• 	No	wai&ng	thread		➙		signal	=	nop	
• Condi&on	variables	have	no	history!	

Monitors	easier	and	safer	than	semaphores	
• 	Lock	acquire/release	are	implicit,	cannot	be	forgoren	
• 	Condi&on	for	which	threads	are	wai&ng	explicitly	in	code

Classic	Mistakes	with	Monitors

27

#1:	Naked	Waits	

	 while	not	some_predicate():	
	 	 CV.wait()	

What	is	wrong	with	this?	
	 random_fn1()	
	 CV.wait()	
	 random_fn2()

How	about	this?	
with	self.lock:		
			a=False		
			while	not	a: 
						self.cv.wait()		
						a=True	

Classic	Mistakes	with	Monitors

28

#2:			If	vs.	While	

What	is	wrong	with	this?	
	 if	not	some_predicate():	
	 	 CV.wait()	

Classic	Mistakes	with	Monitors

29

#3:		Split	Predicates						What	is	wrong	with	this?	
with	lock:	
		while	not	condA:		
						condA_cv.wait()	
		while	not	condB:		
						condB_cv.wait()

Berer:	
with	lock:	
		while	not	condA	or	not	condB:	
				if	not	condA:		
						condA_cv.wait()	
				if	not	condB:		
						condB_cv.wait()

Monitors	in	Python

30

class	RWlock:	
		def	__init__(self):	

		self.lock	=	Lock()	
		self.canRead	=	Condition(self.lock)	
		self.canWrite	=	Condition(self.lock)	
		self.nReaders	=	0	
		self.nWriters	=	0	
		self.nWaitingReaders	=	0	
		self.nWaitingWriters	=	0				

def	end_read(self):	
		with	self.lock:	
					self.nReaders	-=	1	
					if	self.nReaders	==	0	and	self.nWaitingWriters	>	0:	
																self.canWrite.notify()

signal
()	➙	notif

y()	

broadc
ast)	➙

	notif
yAll()

def	begin_read(self):	
			with	self.lock:	
	 		self.nWaitingReaders	+=	1	
						while	self.nWriters	>	0	or	self.nWaitingWriters	>	0:	
									self.canRead.wait()	
						self.nWaitingReaders	-=	1	
						self.nActiveReaders	+=	1

Remember that wait

• releases the lock when called

• re-acquires the lock when it returns

Where	does	the	actual	
reading	take	place?

Monitors	in	“4410	Python”	:	__init__

31

from	rvr	import	MP,	MPthread	

class	MonitorExample(MP):	
	def	__init__(self):	
				MP.__init__(self,None)	

		self.lock	=	Lock(“monitor	lock”)	
		self.canRead	=	self.Lock.Condition(“can	read”)	
		self.canWrite	=	self.Lock.Condition(“can	write”)	
		self.nReaders	=	self.Shared(“num	readers”,	0)	
		self.nWriters	=	self.Shared(“num	writers”,	0)	
		self.nWaitingReaders	=	self.Shared(“n	waiting	readers”,	0)	
		self.nWaitingWriters	=	self.Shared(“n	waiting	writers”,	0)

class	RWlock:	
		def	__init__(self):	

		self.lock	=	Lock()	
		self.canRead	=	Condition(self.lock)	
		self.canWrite	=	Condition(self.lock)	
		self.nReaders	=	0	
		self.nWriters	=	0	
		self.nWaitingReaders	=	0	
		self.nWaitingWriters	=	0				

Monitors	in	“4410	Python”	:	begin_read

32

def	begin_read(self):	
			with	self.lock:	

			self.nWaitingReaders.inc()	
					while	self.nWriters.read()	>	0	or	self.nWaitingWriters.read()	>	0:	

						self.canRead.wait()	
			self.nWaitingReaders.dec()	
			self.nActiveReaders.write(self.nActiveReaders.read()	+	1)

def	begin_read(self):	
			with	self.lock:	
	 		self.nWaitingReaders	+=	1	
						while	self.nWriters	>	0	or	self.nWaitingWriters	>	0:	
									self.canRead.wait()	
						self.nWaitingReaders	-=	1	
						self.nActiveReaders	+=	1

Why	do	we	do	this?	
• helpful	feedback	from	auto-grader		
• helpful	feedback	from	debugger

Look	in	the	A2/doc	
directory	for	details	and	
example	code.

Barrier	SynchronizaLon

33

• 	Important	synchroniza&on	primi&ve	in														
high-performance	parallel	programs	

• 	nThreads	threads	divvy	up	work,	run	rounds	of	
computa&ons	separated	by	barriers.	

• 	could	fork	&	wait	but		
- thread	startup	costs	
- waste	of	a	warm	cache	

	 Create	n	threads	&	a	barrier.	

		Each	thread	does	round1()	
		barrier.checkin()	

		Each	thread	does	round2()	
		barrier.checkin()

Checkin	with	1	condiLon	variable

34

What’s	wrong	with	this?

self.allCheckedIn	=	Condition(self.lock)	

def	checkin():	
	with	self.lock:	
	 			nArrived++	
	 			if	nArrived	<	nThreads:	
			 			while	nArrived	<	nThreads:	
	 	 	 				allCheckedIn.wait()	
	 	 else:		
	 	 			allCheckedIn.broadcast()

Checkin	with	2	condiLon	variables

35

• 	Implemen&ng	barriers	is	not	easy.			
• 	Solu&on	here	uses	a	“double-turns&le”

self.allCheckedIn	=	Condition(self.lock)	
self.allLeaving	=	Condition(self.lock)	

def	checkin():	
	 nArrived++	
	 if	nArrived	<	nThreads:													//	not	everyone	has	checked	in	

	 	 while	nArrived	<	nThreads:	
	 	 	 allCheckedIn.wait()												//	wait	for	everyone	to	check	in	
			else:	
	 	 nLeaving	=	0															//	this	thread	is	the	last	to	arrive	
	 	 allCheckedIn.broadcast()			//	tell	everyone	we’re	all	here!	

	 nLeaving++	
	 if	nLeaving	<	nThreads:													//	not	everyone	has	left	yet	
	 	 while	nLeaving	<	nThreads:	
	 	 	 allLeaving.wait()														//	wait	for	everyone	to	leave	
			else:	
	 	 nArrived	=	0															//	this	thread	is	the	last	to	leave	
	 	 allLeaving.broadcast()					//	tell	everyone	we’re	outta	here!

The Six Commandments
1. Thou shalt always do things the same way

habit allows you to focus on core problem

easier to review, maintain and debug your code

2. Thou shalt always synchronize with locks and condition variables
either CV & locks or semaphores

CV and locks make code clearer

3. Thou shalt always acquire the lock at the beginning of a method
and release at the end

make a chunk of code that requires a lock its own procedure

The Six Commandments
4. Always hold a lock when operating on a condition variable

condition variables are useless without shared state

shared state should only be accessed using a lock

5. Always wait in a while() loop
while works every time if does

makes signals hints

protects against spurious wakeups

6. (Almost) never sleep()
use sleep() only if an action should occur at a specific
real time

never wait on sleep()

Conclusion:	Race	CondiLons	are	a	big	pain!

38

Several	ways	to	handle	them	
• Each	has	its	own	pros	and	cons	

Programming	language	support	simplifies	wri&ng	
mul&threaded	applica&ons	

• Python	condi&on	variables	
• Java	and	C#	support	at	most	one	condi&on	variable	
per	object,	so	are	slightly	more	limited	

Some	program	analysis	tools	automate	checking	
•make	sure	code	is	using	synchroniza&on	correctly	
• 	Hard	part	is	to	defining	“correct”

deal

