Edsgers perspective

Testing can only prove

Thread Synchronization: g e
Foundd'l'lons : ’ ’.\..no’rr their abs?nce!

Properties Safety properties

Property: a predicate that is evaluated over a @ "Nothing bad happens”

rur, of, figeRrparatn i gl O No more than k processes are simultaneously

‘every message that is received was in the critical section
previously sent” O Messages that are delivered are delivered in
FIFO order

Not everything you may want to say about a O No patient is ever given the wrong medication
program is a property: O Windows never crashes

“the program sends an average of 50 @ A safety property is “prefix closed”:
messages in a run” O if it holds in a run, it holds in its every prefix




Liveness properties

@ “Something good eventually happens”

O A process that wishes to enter the critical
section eventually does so

O Some message is eventually delivered

O Medications are eventually distributed fo patients

O Windows eventually boots

@ Every run can be extended to satisfy a liveness
property
0 if it does not hold in a prefix of a run, it does
not mean it may not hold eventually

Critical Section

@ A segment of code involved in reading and writing a
shared data area

@ Used profusely in an OS to protect data structures
(e.g., queues, shared variables, lists, ...)

@ Key assumptions:

o Finite Progress Axiom: Processes execute at a
finite, positive, but otherwise unknown, speed.

o Processes can halt only outside of the critical
section (by failing, or just terminating)

wait-free synchronization (Herlihy, 1991)

A really cool theorem

Every property is a combination of a safety
property and a liveness property

(Alpern & Schneider)

Critical Section

® Mutual Exclusion: At most k threads are
concurrently in the critical section (Safety)




Critical Section

@ Mutual Exclusion: At most k threads are
concurrently in the critical section (Safety)

@ Access Opportunity: A thread that wants to
enter the critical section will eventually succeed
(Liveness)

Critical Section:
General Program Structure

@ Entry section @ OO programming style
o “Lock” before o Associate a lock with
entering critical each shared object
section Methods that access
o Wait if already locked shared objects are

critical section

@ Critical Section code Acquire/release locks

@ Exit section

o “Unlock” when leaving

AR
the critical section L ice seciion

when entering/exiting
a method that defines

Critical Section

@ Mutual Exclusion: At most k threads are
concurrently in the critical section (Safety)

@ Access Opportunity: A thread that wants to
enter the critical section will eventually succeed
(Liveness)

@ Bounded waiting: If a thread ¢ is in its entry
section, then there is a bound on the number of
times that other threads are allowed to enter
the critical section before i's request is granted
(Safety)

Too Much Milk




Formalizing
"Too Much Milk”

® Shared variables

Look in the fridge: o “Look in the fridge for milk” - check

out of milk variable “milk”
Leave for store Look in fridge: no milk

Too Much Milk!

Jack Jill

_ o “Put milk away” - increment “milk”
Arrive at store Leave for store

Buy milk Arrive at store o Safety

Arrive at home: Buy milk O At most one person buys milk

put milk away Arrive at home: put :
milk away @ Liveness

Oh no! o If milk is needed, eventually somebody
buys milk

Solution #0: Solution #0:

Taking Turns Taking Turns
Jack Jill Jack Jill

procedure Check-Milk procedure Check-Milk procedure Check-Milk procedure Check-Milk
while(turn # Jack) relax; while(turn # Jill) relax; while(turn # Jack) relax; while(turn # Jill) relax;
while (Milk) relax; while (Milk) relax; while (Milk) relax; while (Milk) relax;

buy milk; : § buy milk; § buy milk; - § buy milk;

turn := Jill S Y turn := Jack e turn := Jill e Y turn := Jack

@ Safe? Why?
O True, False

@ Live? Why?
o True, False

@ Bounded waiting?
o0 True, false




Solution #0:
Taking Turns

procedure Check-Milk
while(turn # Jack) relax;
while (Milk) relax;

buy milk;

turn := Jill

@ Safe? Yes!

procedure Check-Milk

while(turn # Jill) relax;

while (Milk) relax;
buy milk;
turn := Jack

o it is either Jacks or Jill turn

@ Live? No

0 what if the other guy stops checking milk?

@ Bounded waiting? Yes

o0 .. and the bound is 1!

Solution #1:
Leave a note

@ Leave note = lock
@ Remove note = unlock

@ If you find a note
from your roommate-
dont buy!

procedure Check-Milk

if (noMilk) §

if (noNote) {
leave Note;
buy milk;
remove Note

H
}

@ Safe? Live? Bounded waiting? Why?

Solution #l1:
Leave a note

@ Leave note = lock
@ Remove note = unlock

@ If you find a note
from your roommate-
dont buy!

procedure Check-N_\ilk

if (noMilk) §
if (noNote) {
leave Note;
buy milk;
remove Note

}

}

@ Safe? Live? Bounded waiting? Why?

Solution #l1:
Leave a note

@ If you find a note from your
roommate dont buy!

o Leave note = lock

0 Remove note = unlock

Jack/Jill

if (noMilk) §
if (noNote) {
leave Note;
buy milk;
remove Note
}
}




Solution #1:
Leave a note

@ If you find a note from your Jack/Jill
roommate dont buy! if (milk==0) {
if (note) {

O Leave note = lock note = True;
milk++;

o Remove note = unlock Hote - False

@ Safe? ) '

T T2 !

if (milk==0) { if (milk==0) {
if (Inote) { i if (Inote) §
note = True; note = True;

milk++; milk++; Oh nO! 3

note = False; note = False;
i }
} }

What if we leave
the note first?

if (noMilk) §
if (noNote) §
leave Note;
buy milk;
remove Note
}
}

Solution #l1:
Leave a note

@ If you find a note from Jack/Jill
your roommate dont buy! if (milk == 0) {
if (note==0) {

D Leave note = lock note = 1;
milk++;

o Remove note = unlock note = 0;

@ Safe? ) I

@ This “solution” makes the problem worse!

n sometime it works, sometime it doesn’t

Solution #2: Colored Notes

Jack Jill

Leave Blue note Leave Pink note
if (noPinknote) { if (noBluenote) §
if (noMilk) § if (noMilk) §

buy milk; } buy milk;

} }

Remove Blue note Remove Pink note




Solution #2:

Jack

BlueNote = 1;
if (PinkNote == 0) {
if (milk == 0) §
milk++;
H

}
BlueNote = 0O;

Colored Notes

Jill
PinkNote = 1;
if (BlueNote == 0) {
if (milk == 0) §{
milk++;

H
}
PinkNote = 0O;

Jack

BlueNote = 1;
if (PinkNote == 0) {
if (milk == 0) {
milk++;
}
H
BlueNote = O;

Solution #2: Colored Notes

Jill
PinkNote = 1;
if (BlueNote == 0) {
if (milk == 0) §{
milk++;

}
}
PinkNote = 0O;

Proof of Safety :
© Case 2: PinkNote == 0, milk > 0 Proof of Liveness

By contradiction: N H
: : : ot Live!
Suppose Jack and Jill both buy milk émP:ss'bli'i ";'“: i OT ' SL“ble i er*y’,lio
Consider state of variables (PinkNote,milk) at A el T G G A s A
@ Case 3: PinkNote == 0, milk == 0

@ Case 1: PinkNote == 1 Impossible. Jill cannot be executing in B;-Bs
(PinkNote is not 1!)

Since (BlueNote==1 or milk>0) is stable, then
Jill will not pass B:

Impossible, since Jack ends up buying milk

Too Much Milk:
Lessons

Solution #3

Jack Jill

BlueNote = 1; PinkNote = 1;
while (PinkNote == 1) { if (BlueNote == 0) {
; if (milk == 0) {
milk++;
if (milk == 0) { } o Complicated; proving correctness is tricky

: milk++; I}DinkNo‘re o even for the simple example

} Inefficient: while thread is waiting, it is
BlueNote = 0; consuming CPU time

Last solution works, but it is really
unsatisfactory:

’

OrooFoF Safaty Proof of Lifereas o Asymmetric: hard to scale to many threads

Jill will eventually set PinkNote = 0 o Incorrect(?) : instruction reordering can
(no loops) produce surprising results
Jack will then reach line A

if Jack finds milk, done

If still no milk, Jack will buy it

Similar to previous case




Solution #3.1 (Petersons):
combine ideas from #0 & #2

@ We introduce two variables:

O turn, : id of thread allowed to enter CS under contention
o in;: thread 7Tiis executing in CS, or trying to do so

How do we
@ Claim: If the following invariant holds when T;

enters the critical section, so does mutual exclusion

ing A (athps (inj A turn = 1))

A first fix

@ Add assignment to turn to establish second disjunct

Thread To

while(!terminate) {
ing = true

Thread T,

while(!terminate) {

mny = true
{”1:”0} {iTLl}
turn =1
while (iny A turn # 0);
{ing A (—ming V turn = 0)}
CSo

turn =0

while(ing A turn # 1);
{iny A (ming V turn = 1)}
CS,

ing = false Pu+ f'heie
invariants

N
) e do np’r hold! NCS5,

iny = false

Towards a solution

@ The problem then boils down to establishing
the following:

e A (s V(e A turn— O g AR turn — ©)

@ How can we do that?

ENERYET A= true
while (in; A turn # i)

A dirty trick

@ To establish the invariant, we add an auxiliary
variable & that tracks the position of the PC
Thread To Thread T,
while(!terminate) { while(!terminate)
ing = drue iny = true
{ing} {in1}
ag turn — 1
while (iny A turn # 0);
{ing A (—ing V turn = 0)Y at(on))}
CSy

ay turn =0
while (ing A turn # 1)
{inq A (ming V turn = 1)} at(ao))}
CSy
ing = false
NCSy

}

in1 = false

NCS,




Is Peterson safe?

Thread To Thread T
while(!terminate) { while(!terminate)
ing := true iny = true
{ino} {in1}
oy turn =1 aj turn =0
while (in1 A turn # 0); while (ing A turn # 1)
{iTLU A (‘\inl Viturn =0V (Lt(a1)>} {inl A (—\in[) Viturn =1V (I,t((k()))}
CS() CSI
ing = false Tf both in the critical sectiorsthen:
; NCSy . : NCS; ;
A (}ﬁ/m Vturn = 0V at(aq))Aing A (ming V /,'ur/}: 1V at(ag))A—at(ag)A
= (turn = 0) A (turn = 1) = false

Live: Deadlock-free

while(!terminate) {
{Ry : —ing A (turn =1V turn = 0)}
110 = tRlie

while(!terminate) {
{81 : —ing A (Burn = 1V turn = 0)}
iny = true
{Rs :ing A (turn = 1V turn = 0)} {85 tny Alturn =1V turn = 0)}
ag turn =1 o turn =0
{R2} {S2}
while(iny A turn # 0); while (ing A turn # 1);
{R3 :ing A (—iny Vturn =0V at(ay))} {85 : in1 A (ming V turn = 1 V at(ao))}
CSp CSy
{Ss}
in; = false
{51}
NCS;

T, and T, at the while loop, before entering critical section

Ry A Sy A ing A (turn = 1) A ing A (turn = 0) = (turn = 0) A (turn = 1) = false

Live: Non-blocking

while(!terminate) {
{Ry : ~ing A (turn =1V turn = 0)}
g = trle

while(!terminate) {
{S1 : —ing A (turn =1V turn = 0)}
iny = true
{Rs :ing A (turn = 1V turn = 0)} {iSoiinn A ltun =iV tupn —0)
ap turn =1 a; turn =0
{R2} {52}
while(ing A turn # 0); while (ing A turn # 1);
{R3 :ing A (miny Vturn =0V at(aq))} {S5 : ing A (ming V turn =1V at(ap))}
CSp CSy
{Rs} {53}
ing = false iny = false
{B1} {51}
NCSp NCS;

T, before NCS,, T, stuck at while loop
Ry A Se Aing A (turn = 0) = —ing Aing A ing A (turn = 0) = false

A better way

@ How can we do better?

0 Define higher-level programming abstractions
(shared objects, synchronization variables) to
simplify concurrent programming

o lock.acquire() - wait until lock is free, then grab it e atomic
o lock.release() - unlock, waking up a waiter, if any e atomic

Jack/Jill/even Dame Dob!
Kitchen::buyIfNeeded() {
lock.acquire():
if (milk == 0) {
milk++;

lock.release();

o Use hardware fo support atomic operations
beyond load and store




