
Thread Synchronization:

Foundations

Edsger’s perspective

Testing can only prove 
the presence of bugs…

…not their absence!

Properties

Property: a predicate that is evaluated over a 
run of the program (a trace)


“every message that is received was 
previously sent”


Not everything you may want to say about a 
program is a property:


“the program sends an average of 50 
messages in a run”

Safety properties
“Nothing bad happens”


No more than    processes are simultaneously 
in the critical section

Messages that are delivered are delivered in 
FIFO order

No patient is ever given the wrong medication

Windows never crashes


A safety property is “prefix closed”:

if it holds in a run, it holds in its every prefix
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Liveness properties
“Something good eventually happens”


A process that wishes to enter the critical 
section eventually does so

Some message is eventually delivered

Medications are eventually distributed to patients

Windows eventually boots


Every run can be extended to satisfy a liveness 
property 


if it does not hold in a prefix of a run, it does 
not mean it may not hold eventually

A really cool theorem

Every property is a combination of a safety 
property and a liveness property


(Alpern & Schneider)

Critical Section
A segment of code involved in reading and writing a 
shared data area


Used profusely in an OS to protect data structures 
(e.g., queues, shared variables, lists, …)


Key assumptions:


Finite Progress Axiom: Processes execute at a 
finite, positive, but otherwise unknown, speed.


Processes can halt only outside of the critical 
section (by failing, or just terminating)


wait-free synchronization (Herlihy, 1991)

Critical Section

Mutual Exclusion: At most   threads are 
concurrently in the critical section (Safety) 
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concurrently in the critical section (Safety)
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enter the critical section will eventually succeed 
(Liveness) 
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Critical Section

Mutual Exclusion: At most   threads are 
concurrently in the critical section (Safety)


Access Opportunity: A thread that wants to 
enter the critical section will eventually succeed 
(Liveness)


Bounded waiting: If a thread   is in its entry 
section, then there is a bound on the number of 
times that other threads are allowed to enter 
the critical section before  ’s request is granted 
(Safety)
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Critical Section:  
General Program Structure

Entry section

“Lock” before 
entering critical 
section

Wait if already locked


Critical Section code


Exit section

“Unlock” when leaving 
the critical section


OO programming style

Associate a lock with 
each shared object

Methods that access 
shared objects are 
critical section

Acquire/release locks 
when entering/exiting 
a method that defines 
a critical section

Too Much Milk



Too Much Milk!
Jack


Look in the fridge: 
out of milk

Leave for store

Arrive at store

Buy milk

Arrive at home: 
put milk away


Jill


Look in fridge: no milk

Leave for store

Arrive at store

Buy milk

Arrive at home: put 
milk away

Oh no!

Formalizing  
“Too Much Milk”

Shared variables

“Look in the fridge for milk” - check 
variable “milk”

“Put milk away” - increment “milk”


Safety

At most one person buys milk


Liveness

If milk is needed, eventually somebody 
buys milk

Solution #0:  
Taking Turns

procedure Check-Milk

while(turn ≠ Jack) relax;

while (Milk) relax; 

buy milk;

turn := Jill

procedure Check-Milk

while(turn ≠ Jill) relax;

while (Milk) relax;

buy milk;

turn := Jack

Jack Jill

Solution #0:  
Taking Turns

procedure Check-Milk

while(turn ≠ Jack) relax;

while (Milk) relax; 

buy milk;

turn := Jill

procedure Check-Milk

while(turn ≠ Jill) relax;

while (Milk) relax;

buy milk;

turn := Jack

Safe? Why?

True, False


Live? Why?

True, False


Bounded waiting?

True, false

Jack Jill



Solution #0:  
Taking Turns

procedure Check-Milk

while(turn ≠ Jack) relax;

while (Milk) relax; 

buy milk;

turn := Jill

procedure Check-Milk

while(turn ≠ Jill) relax;

while (Milk) relax;

buy milk;

turn := Jack

Safe? Yes!

it is either Jack’s or Jill turn 


Live? No

what if the other guy stops checking milk?


Bounded waiting? Yes

... and the bound is 1!

Solution #1: 
Leave a note

Leave note = lock


Remove note = unlock


If you find a note 
from your roommate-
don’t buy!

procedure Check-Milk

if (noMilk) {


if (noNote) {

leave Note;

buy milk;

remove Note


}

}

Safe? Live? Bounded waiting? Why?

Solution #1: 
Leave a note

Leave note = lock


Remove note = unlock


If you find a note 
from your roommate-
don’t buy!

procedure Check-Milk

if (noMilk) {


if (noNote) {

leave Note;

buy milk;

remove Note


}

}

Safe? Live? Bounded waiting? Why?

Solution #1: 
Leave a note

If you find a note from your 
roommate don’t buy!


Leave note ≈ lock

Remove note ≈ unlock

  Jack/Jill

if (noMilk) {


if (noNote) {

leave Note;

buy milk;

remove Note


}

}



Solution #1: 
Leave a note

If you find a note from your 
roommate don’t buy!


Leave note ≈ lock

Remove note ≈ unlock

  Jack/Jill

if (milk==0) {


if (!note) {

note = True;

milk++;

note = False;


}

}

if (milk==0) {

T1

if (milk==0) {

if (!note) {


note = True;

milk++;

note = False;


}

}

T2

if (!note) {

note = True;

milk++;

note = False;


}

}

T1

Oh no!
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Safe?

Solution #1: 
Leave a note

If you find a note from 
your roommate don’t buy!

Leave note ≈ lock

Remove note ≈ unlock

  Jack/Jill

if (milk == 0) {


if (note==0) {

note = 1;

milk++;

note = 0;


}

}Safe?

This “solution” makes the problem worse!

sometime it works, sometime it doesn’t

What if we leave 

the note first?

if (noMilk) {

if (noNote) {

leave Note;

buy milk;

remove Note


}

}

Leave note;

if (noNote) {

if (noMilk) {

buy milk;

remove Note


}

}

Solution #2: Colored Notes
Jack


Leave Blue note

if (noPinknote) {


if (noMilk) {

buy milk;


}

}

Remove Blue note

Jill


Leave Pink note

if (noBluenote) {


if (noMilk) {

buy milk;


}

}

Remove Pink note



Solution #2: Colored Notes
Jack


BlueNote = 1;

if (PinkNote == 0) {


if (milk == 0) {

milk++;


}

}

BlueNote = 0;

Jill

PinkNote = 1;

if (BlueNote == 0) {


if (milk == 0) {

milk++;


}

}

PinkNote = 0;

Proof of Safety

By contradiction: 

Suppose Jack and Jill both buy milk

Consider state of variables (PinkNote,milk) at A1

A1
A2
A3

Case 3: PinkNote == 0, milk == 0


Impossible. Jill cannot be executing in B1-B3 
(PinkNote is not 1!)


Since (BlueNote==1 or milk>0) is stable, then 
Jill will not pass B1

B1
B2
B3

Case 1: PinkNote == 1


    Impossible, since Jack ends up buying milk

Case 2: PinkNote == 0, milk > 0


Impossible. milk > 0 is a stable property, so 
Jack would fail test A2 and never buy milk

Proof of Liveness


A1
A2
A3

B1
B2
B3
B4
B5

Not Live!

Solution #2: Colored Notes
Jack


BlueNote = 1;

if (PinkNote == 0) {


if (milk == 0) {

milk++;


}

}

BlueNote = 0;

Jill

PinkNote = 1;

if (BlueNote == 0) {


if (milk == 0) {

milk++;


}

}

PinkNote = 0;

Solution #3

Proof of Safety

Similar to previous case

Jack

BlueNote = 1;

while (PinkNote == 1) {


;

}

if (milk == 0) {


milk++;

}


}

BlueNote = 0;

Jill


PinkNote = 1;

if (BlueNote == 0) {


if (milk == 0) {

milk++;


}

}

PinkNote = 0;

Proof of Liveness

Jill will eventually set PinkNote = 0 
(no loops)

Jack will then reach line A1


if Jack finds milk, done

If still no milk, Jack will buy it

A1

Too Much Milk: 
Lessons

Last solution works, but it is really 
unsatisfactory:


Complicated; proving correctness is tricky 
even for the simple example

Inefficient: while thread is waiting, it is 
consuming CPU time

Asymmetric: hard to scale to many threads

Incorrect(?) : instruction reordering can 
produce surprising results



Solution #3.1 (Peterson’s): 
combine ideas from #0 & #2

We introduce two variables:

       : id of thread allowed to enter CS under contention 

    : thread    is executing in CS, or trying to do so


Claim: If the following invariant holds when       
enters the critical section, so does mutual exclusion

ini

turni

Ti

Ti

¬inj ∨ini

 wants to enter CSini

∧ ( )

 does not desire 
to enter CS
inj  wants to enter 

CS, but it is    ’s turn
inj

ini

(inj ∧ turn = i)

How do we 
prove it?

Towards a solution

The problem then boils down to establishing 
the following:


How can we do that?

ini ∧ (¬inj ∨ (inj ∧ turn = i)) = ini ∧ (¬inj ∨ turn = i)

entryi : ini := true

while (inj ∧ turn ̸= i)

A first fix
Add assignment to       to establish second disjunct

Thread T0

in0 := true
while(!terminate)

{in0}

while
{in0 ^ (¬in1 _ turn = 0)}

(in1 ^ turn 6= 0);

CS0

. . .

}

{

turn

turn = 1

in0 = false

Thread T1

in1 := true

}

CS1

while(!terminate)

while

{

{in1 ^ (¬in0 _ turn = 1)}

{in1}

. . .
in1 = false

turn = 0

NCS0 NCS1

but these 
invariants 
do not hold!

(in0 ^ turn 6= 1);

A dirty trick

Thread T0

while(!terminate)

while

. . .

Thread T1

while(!terminate)

while

. . .

To establish the invariant, we add an auxiliary 
variable    that tracks the position of the PCα

{in1 ^ (¬in0 _ turn = 1 _ at(↵0))}{in0 ^ (¬in1 _ turn = 0 _ at(↵1))}

↵1↵0

NCS1NCS0

turn = 0

in1 = falsein0 = false

turn = 1

{in1}{in0}

{in1 ^ (¬in0 _ turn = 1)}
(in0 ^ turn 6= 1)

CS1CS0

(in1 ^ turn 6= 0);

{in0 ^ (¬in1 _ turn = 0)}

in0 := true in1 := true

}

{
{

}



Is Peterson safe?

Thread T0
while(!terminate)

while

. . .

Thread T1
while(!terminate)

while

. . .

{in1 ^ (¬in0 _ turn = 1 _ at(↵0))}{in0 ^ (¬in1 _ turn = 0 _ at(↵1))}

↵1↵0

NCS1NCS0

turn = 0

in1 = falsein0 = false

turn = 1

{in1}{in0}

(in0 ^ turn 6= 1)

CS1CS0

(in1 ^ turn 6= 0);

in0 := true in1 := true

}

{
{

}in0 ∧ (¬in1 ∨ turn = 0 ∨ at(α1))∧in1 ∧ (¬in0 ∨ turn = 1 ∨ at(α0))∧¬at(α0)∧¬at(α1) =

= (turn = 0) ∧ (turn = 1) = false

If both in the critical section, then:

Live: Non-blocking

Blocking Scenario: T0  before NCS0, T1 stuck at while loop


while(!terminate) while(!terminate){
{S1 : ¬in1 ^ (turn = 1 _ turn = 0)}

while

CS1CS0

NCS0

{S3}

{S1}

{

in1 := true
{S2 : in1 ^ (turn = 1 _ turn = 0)}
turn := 0
{S2}

(in0 ^ turn 6= 1);while
{S3 : in1 ^ (¬in0 _ turn = 1 _ at(↵0))}

in1 = false

NCS1
}

{R1}

{R2}

{R3}

{R3 : in0 ^ (¬in1 _ turn = 0 _ at(↵1))}
(in1 ^ turn 6= 0);

turn = 1

in0 = false

in0 = true

↵0 ↵1

{R2 : in0 ^ (turn = 1 _ turn = 0)}

{R1 : ¬in0 ^ (turn = 1 _ turn = 0)}

}

R1 ^ S2 ^ in0 ^ (turn = 0) = ¬in0 ^ in1 ^ in0 ^ (turn = 0) = false

Live: Deadlock-free

Blocking Scenario: T0  and T1 at the while loop, before entering critical section

while(!terminate) while(!terminate){
{S1 : ¬in1 ^ (turn = 1 _ turn = 0)}

while

CS1CS0

NCS0

{S3}

{S1}

{

in1 := true
{S2 : in1 ^ (turn = 1 _ turn = 0)}
turn := 0
{S2}

(in0 ^ turn 6= 1);while
{S3 : in1 ^ (¬in0 _ turn = 1 _ at(↵0))}

in1 = false

NCS1
}

{R1}

{R2}

{R3}

{R3 : in0 ^ (¬in1 _ turn = 0 _ at(↵1))}
(in1 ^ turn 6= 0);

turn = 1

in0 = false

in0 = true

↵0 ↵1

{R2 : in0 ^ (turn = 1 _ turn = 0)}

{R1 : ¬in0 ^ (turn = 1 _ turn = 0)}

}

R2 ^ S2 ^ in1 ^ (turn = 1) ^ in0 ^ (turn = 0) ) (turn = 0) ^ (turn = 1) = false

A better way
How can we do better?

Define higher-level programming abstractions 
(shared objects, synchronization variables) to 
simplify concurrent programming 


lock.acquire() - wait until lock is free, then grab it • atomic

lock.release() - unlock, waking up a waiter, if any • atomic


Use hardware to support atomic operations 
beyond load and store

    Jack/Jill/even Dame Dob!


Kitchen::buyIfNeeded() {

lock.acquire():

if (milk == 0) {


milk++;

}


lock.release();

}


