
Synchroniza+on	Basics	
and	Semaphores

CS	4410	
Opera+ng	Systems	

Spring	2017	
Cornell	UniversityLorenzo	Alvisi	

Anne	Bracy	

See:	Ch	5&6	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.

Stack 2

Threads	and	their	Data

2

Data

Insns

Stack 3

Stack 3

PC
SP

Thread 3

PC
SP

Thread 2

PC
SP

Thread 1

Threads	have:	
•	Private	stack	
•	Private	registers	
•	Shared	globals	
•	What	about	data?	

(1)	Independent	Threads
Data

t1 working set

t2 working set

t3 working set

(2)	CooperaPve	Threads
Data

t2
t1

t3

(private	by	
agreement)

2	possibili+es:

Code	like	this:

2	Threads,	1	Shared	Variable

3

.	.	.	
amount	-=	10,000;	
.	.	.

.	.	.	
amount	*=	0.5;	
.	.	.

T1 T2

.	.	.	
r1	=	load	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
.	.	.

.	.	.	
r2	=	load	amount	

.	.	.	

r2	=	0.5	*	r2	
store	r2	to	amount	
.	.	.

T1
T2

Might	execute	like	this:

Race	CondiPons

4

ALL	possible	interleavings	should	be	safe!

When	the	behavior	of	a	program	depends	on	the	
interleaving	of	opera+ons	of	different	threads.	
		(Once	thread	starts,	it	needs	to	“race”	to	finish.)	

Number	of	possible	interleavings	is	huge	
•		Some	interleavings	are	good	
•		Some	interleavings	are	bad:	

•		Bad	interleavings	may	be	rare!		
•		Works	100	;mes	≠	correct	
•	Case	Study:	Therac-25

Problems	with	SequenPal	Reasoning

5

1.	Program	execu+on	depends	on	the	possible	
interleavings	of	threads’	access	to	shared	state.	

2.	Program	execu+on	can	be	nondeterminis+c.	

3.	Compilers	and	processor	hardware	can	reorder	
instruc+ons.	

6

SemaphoresLocks Condi+on	Variables

Mul+ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc+ons
ATOMIC INSTRUCTIONS

SYNCHRONIZATION VARIABLES

CONCURRENT APPLICATIONS
. . .

Race	CondiPon	Revisited

7

disable_interrupts();	
r1	=	load	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
enable_interrupts();

disable_interrupts();	
r2	=	load	amount	
r2	=	0.5	*	r2	
store	r2	to	amount	
enable_interrupts();	

T1 T2

That	was	easy….	class	dismissed?

r1

r2

T2 Register File

Test	and	Set

8

tas	r1,	0(r2):	
			r1	⬅ 0(r2)		#	test	
			0(r2)	⬅ 1			#	set

0-free	
1-takenr1

r2

T1 Register File Memory

110

MIPS version:

0

•	atomic	hardware	primi+ve	
•	typically	a	mul+-cycle	bus	
opera+on	that	atomically	reads	
and	updates	a	memory	loca+on	

•	supports	mutual	exclusion	

Test	and	Set	to	provide	Mutual	Exclusion

9

acquire(int	*lock)	{	
			while(test_and_set(lock))	
	 		/*	do	nothing	*/;	
}

release(int	*lock)	{	
	 *lock	=	0;	
}

ATOMIC	int	TestAndSet(int	*var)	
{	
	 int	oldVal	=	*var;	
	 *var	=	1;	
	 return	oldVal;	
}

C	semanPcs	of	
Test-And-Set

Race	CondiPon	Revisited

10

acquire();	
while(test_and_set(lock))	
while(test_and_set(lock))	
while(test_and_set(lock))	

while(test_and_set(lock))	
r1	=	load	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
release();

acquire();	
r2	=	load	amount	

r2	=	0.5	*	r2	
store	r2	to	amount	
release();	

T1 T2

Now with
Locks!Is	this	a	good	

soluPon?

yield()

11

Thou
shalt not
busy-wait!

12

SemaphoresLocks Condi+on	Variables

Mul+ple	Processors	 Hardware	Interrupts
HARDWARE

Interrupt	Disable Atomic	R/W	Instruc+ons
ATOMIC INSTRUCTIONS

SYNCHRONIZATION VARIABLES

CONCURRENT APPLICATIONS
. . .

Semaphores

13

Dijkstra	introduced	in	the	THE	Opera+ng	System	

•	Stateful:	
•	a	semaphore	has	a	non	nega+ve	VALUE	
associated	with	it	

•	value	is	incremented	and	decremented	
atomically		

•	Interface	
•	Two	opera+ons:	P()	and	V()	
•	No	opera+on	to	read	the	value!

[Dijkstra 1962]

P(S):	
•	wait	un+l	value	is	posi+ve	
•	when	so,	atomically	
decrement	VALUE	by	1	

V(S):	
•	increment	VALUE	by	1	
•	resume	a	thread	wai+ng	
on	P	(if	any)

Semaphore	OperaPons:	P	and	V

14

P(S)	{	
				while(S	<=	0)		
							;	
				S	-=	1;	
}

V(S)	{	
				S	+=	1;	
}	

Dutch 4410: P = Probeer (‘Try') and V = Verhoog ('Increment', 'Increase by one')

Binary	Semaphore

15

Semaphore	value	is	either	0	or	1	
• 	Used	for	mutual	exclusion		

(semaphore	as	a	more	efficient	lock)	
• 	Ini+ally	1	in	that	case	

P(S)	
CriticalSection()	
V(S)	

P(S)	
CriticalSection()	
V(S)	

T1 T2

Semaphore	S	
S.init(1)

Sema	count	can	be	any	integer	
• 	Used	for	signaling	or	coun+ng	resources	
• 	Typically:		

• 	one	thread	performs	P()	to	await	event	
• 	another	thread	performs	V()	to	alert	wai+ng	thread	
that	event	has	occurred	

CounPng	Semaphores

16

PacketProcessor():	
x	=	get_packet_from_card()	
enqueue(packetq,	x);	
V(packetarrived);	

NetworkingThread():	
P(packetarrived);	
x	=	dequeue(packetq);	
print_contents(x);	

T1 T2

Semaphore	packetarrived	
packetarrived.init(0)

17

P(Sema	*s)	{		
	if	count	big	enough	

	 		decrement	count	
	 else	{	

	make	note	of	thread	
	stop	thread	

	 }	
}

Possible	Semaphore	implementaPon	

P1	Context:	no	preempPon	(threads	run	unPl	they	yield)

P(S)	{	
				while(S	<=	0)		
							;	
				S	-=	1;	
}

V(Sema	*s)	{	
	 if	no	one	waiting	on	s	
					increment	count	
	 else	
				wake	an	interested	thread
		 	

	 }	
}

V(S)	{	
				S	+=	1;	
}	

Producer-Consumer	Problem

18

2+	threads	communicate:		
some	threads	produce	data	that	others	consume			

Bounded	buffer:	size	N	
Producer	process	writes	data	to	buffer	
• Writes	to	in	and	moves	rightwards	
• Don’t	write	more	than	N!	
Consumer	process	reads	data	from	buffer	
• Reads	from	out	and	moves	rightwards	
• Don’t	consume	if	there	is	no	data!	

Example:	“pipe”		(|)	in	Unix						>	cat	file	|	sort	|	uniq	|	more

0 N-1

in out

SoluPon	#1:	No	ProtecPon

19

//	add	item	to	buffer	
void	produce(int	item)	{	
		buf[in]	=	item;	
		in	=	(in+1)%N;	
}	

//	remove	item	
int	consume()	{	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		return	item;	
}

Problems:	
1.	Unprotected	shared	state	(mul+ple	producers/consumers)	
2.	Inventory:		
•	Consumer	could	consume	when	nothing	is	there!	
•	Producer	could	overwrite	not-yet-consumed	data!

Shared:	
int	buf[N];	
int	in,	out;

SoluPon	#2:	Add	Mutex	Semaphores

20

//	add	item	to	buffer	
void	produce(int	item)	
{	
P(mutex_prod);	

		buf[in]	=	item;	
		in	=	(in+1)%N;	
V(mutex_prod);	

}

//	remove	item	
int	consume()		
{	
		P(mutex_cons);	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		V(mutex_cons);	
		return	item;	
}

Shared:	
int	buf[N];	
int	in,	out;	
Semaphore	mutex_prod(1),	mutex_cons(1);

now atomic

SoluPon	#3:	Add	CommunicaPon	Semaphores

21

void	produce(int	item)	
{	
P(enoughRoom);	//space?	
P(mutex_prod);	

		buf[in]	=	item;	
		in	=	(in+1)%N;	
V(mutex_prod);	
V(dataThere);	//item!	

}

int	consume()		
{	
		P(dataThere);	//need item		
		P(mutex_cons);	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		V(mutex_cons);	
V(enoughRoom);	//	space!	

		return	item;	
}

Shared:	
int	buf[N];	
int	in,	out;	
Semaphore	mutex_prod(1),	mutex_cons(1);	
Semaphore	enoughRoom(N),	dataThere(0);

DONE	FOR	TODAY!

22

Classic	Semaphore	Mistakes

23

P(S)	
CS	
P(S)

I

V(S)	
CS	
V(S)

P(S)	
CS

J

K

P(S)	
if(x)	return;	
CS	
V(S)

L

	I	stuck	on	2nd	P().	Subsequent	
processes	freeze	up	on	1st	P().

Undermines	mutex:		
•	J	doesn’t	get	permission	via	P()		
•	“extra”	V()s	allow	other	processes	
into	the	CS	inappropriately

Next	call	to	P()	will	freeze	up.	
Confusing	because	the	other	process	
could	be	correct	but	hangs	when	you	
use	a	debugger	to	look	at	its	state!

Conditional	code	can	change	code	
flow	in	the	CS.	Caused	by	code	

updates	(bug	fixes,	etc.)	by	someone	
other	than	original	author	of	code.

⬅typo

⬅typo

⬅omission

Semaphores	Considered	Harmful

24

“During	system	concep+on	it	transpired	that	we	
used	the	semaphores	in	two	completely	different	
ways.	The	difference	is	so	marked	that,	looking	
back,	one	wonders	whether	it	was	really	fair	to	
present	the	two	ways	as	uses	of	the	very	same	
primi+ves.	On	the	one	hand,	we	have	the	
semaphores	used	for	mutual	exclusion,	on	the	
other	hand,	the	private	semaphores.”		

—	Dijkstra	“The	structure	of	the	’THE’-Mul+programming	System”	
Communica+ons	of	the	ACM	v.	11	n.	5	May	1968.

Semaphores	NOT	to	the	rescue!

25

Semaphores	are	“low-level”	primi+ves.	Small	errors:	
• 	Easily	bring	system	to	grinding	halt	
• 	Very	difficult	to	debug	

Two	usage	models:	
• 	Mutual	exclusion:	“real”	abstrac+on	is	a	cri+cal	sec+on	
• 	Communica:on:	threads	use	semaphores	to	
communicate	(e.g.,	bounded	buffer	example)	

Simplifica:on:	Provide	concurrency	support	in	compiler	
➙Enter	Monitors

