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Uniprocessor Performance 
not Scaling

20%/year

52%/year

25%/year

Source: David Patterson

Power and Heat lay waste 
to CPU makers

Intel P4 (2000-2007)

1.3GHz to 3.8GHz, 31 stage pipeline

“Prescott” in 02/04 was too hot.  Needed 5.2GHz 

to beat 2.6GHz Athlon


Intel Pentium Core, (2006-)

1.06GHz to 3GHz, 14 stage pipeline

Based on mobile (Pentium M) micro-architecture


Power efficient


2% of electricity in the U.S. feeds computers

Doubled in last 5 years

What about Moore’s law?

Number of transistors doubles every two years — not performance!



Transistor budget

We have an increasing glut of transistors


(at least for a few more years)


But we can’t use them to make things faster


what worked in the 90s blew up heat faster than 
we can dissipate it


What to do?


make more cores!

Multicore is here - 

plain and simple

Raise your hand if your laptop is single core


Your phone?


That’s what I thought

Multicore Programming: 
Essential Skill

Hardware manufacturers betting big on multicore


Software developers are needed


Writing concurrent programs is not easy


You will learn how to do it in this class!

Processes and Threads
The Process abstraction combines two concepts


Concurrency: each process is a sequential execution 
stream of instructions

Protection: Each process defines an address space 
that identifies what can be touched by the program


Threads

Key idea: decouple concurrency from protection

A thread represents a sequential execution stream of 
instructions

A process defines the address space that may be 
shared by multiple threads



Thread: an abstraction 
for concurrency

A single-execution stream of instructions that represents 
a separately schedulable task


OS can run, suspend, resume thread at any time 

bound to a process

Finite Progress Axiom: execution proceeds at some 
unspecified, non-zero speed


Virtualizes the processor

programs run on machine with an infinite number of 
processors (hint: not true)


Allows to specify tasks that should be run concurrently... 

...and lets us code each task sequentially

Why threads?

To express a natural program structure

updating the screen, fetching new data, receiving user 
input


To exploit multiple processors

different threads may be mapped to distinct processors


To maintain responsiveness

splitting commands, spawn threads to do work in the 
background 


Masking long latency of I/O devices

do useful work while waiting

How can they help?

Consider the following code segment:


for (k = 0; k < n; k++)

a[k] = b[k] × c[k] + d[k] × e[k] 

Is there a missed opportunity here?

How can they help?

Consider a Web server

get network message from client

get URL data from disk

compose response

send response



How can they help?

Consider a Web server

get network message from client

get URL data from disk

compose response

send response

Create a number of threads, and for each thread do

What did we gain?

Overlapping I/O & 
Computation

Request 1

Thread 1

Request 2

Thread 2

get network message 
(URL) from client

(disk access latency)

get URL from disk

send data over network

get network message 
(URL) from client

(disk access latency)

get URL from disk

send data over network

Time
Total time is less than Request 1 + Request 2

Processes vs. Threads
Processes


Have data/code/heap and other 
segments


Include at least one thread


If a process dies, its resources 
are reclaimed and its threads die


Interprocess communication via 
OS and data copying


Have own address space, isolated 
from other processes’


Each process can run on a 
different processor


Expensive creation and context 
switch 


Processes


Threads

No data segment or heap


Needs to live in a process

More than one can be in a 
process. First calls main.

If a thread dies, its stack is 
reclaimed

Have own stack and registers, 
but no isolation from other 
threads in the same process

Inter-thread communication via 
memory

Each thread can run on a 
different processor

Inexpensive creation and context 
switch

Implementing the thread 
abstraction: the state

Shared

State

Per-Thread

State

Per-Thread

State

Heap

Global 
Variables

Code

Thread Control Block 
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Thread Control Block 
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Stack frame

Stack frame

Stack frame

Stack frame

Note: No protection enforced at the thread level!



A simple API
void thread_create(thread, func, arg) 

creates a new thread in thread, which will execute 
function func with arguments arg 

void thread_yield() 

calling thread gives up the processor


thread_join(thread) 

wait for thread to finish, then return the value 
thread passed to sthread_exit.


thread_exit(ret) 

finish caller; store ret in caller’s TCB and wake up any 
thread that invoked sthread_join(caller)

Multithreaded Processing 
Paradigms

User Space

Kernel

Dispatcher
Workers

Web page

cache

Dispatcher/Workers

Multithreaded Processing 
Paradigms

User Space

Kernel

Specialists

Requests

Multithreaded Processing 
Paradigms

User Space

Kernel

Pipelining

Request



Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of 
Init, Ready, Running, Waiting, and Finished states 
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Threads (just like processes) go through a sequence of 
Init, Ready, Running, Waiting, and Finished states 

Thread creation

(e.g. thread_create())

TCB: being created

Registers: in TCB
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(e.g. thread_yield())
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(e.g. thread_yield())

TCB: Running list
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Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of 
Init, Ready, Running, Waiting, and Finished states 

Thread creation

(e.g. thread_create())

Scheduler 

resumes thread

Thread waits for event

(e.g. thread_join())

Thread yields

Scheduler suspends thread


(e.g. thread_yield())

TCB: Synchronization

variable’s waiting list 

Registers: TCB
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calls thread_exit())



Threads Life Cycle
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Scheduler 

resumes thread
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Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of 
Init, Ready, Running, Waiting, and Finished states 

Thread creation

(e.g. thread_create())

Scheduler 

resumes thread

Thread yields

Scheduler suspends thread


(e.g. thread_yield()) Thread waits for event

(e.g. thread_join())

Event occurs

(e.g. other thread 

calls thread_exit())

TCB: Finished list (to pass 
exit value), then deleted

Registers: TCB

Thread exit

(e.g. thread_exit())

One abstraction,

many flavors

Kernel-level threads

execute kernel code. Common in today’s OSs


Kernel level threads and single-threaded processes

system call handlers  run concurrently with kernel threads


Multithreaded processes using kernel threads

thread within process make sys calls into kernel


User-level threads

thread ops in user-level library, without informing kernel

TCB in user level ready list

Context switching       
in-kernel threads

You know the drill:

Thread is running

Switch to kernel

Save thread state (to TCB and stack)

Choose new thread to run

Load its state (from TCB and stack)

Thread is running



Context switching       
in-kernel threads

You know the drill:

Thread is running

Switch to kernel

Save thread state (to TCB and stack)

Choose new thread to run

Load its state (from TCB and stack)

Thread is running

Policy decision left

to the scheduler{

What triggers  
a context switch?

Voluntary event

via a call to the thread library: 
thread_yield(), thread_wait(), thread_exit() 

Involuntary event

e.g., timer or I/O interrupt; processor 
exception

Voluntary Kernel thread  
context switch

Defer interrupts


Choose next thread to run from ready list


Switch!

save register and stack of current thread in TCB

add current thread to ready list

switch to new thread’s stack

slurp in new thread’s state from its TCB

change state of new thread to RUNNING


Enable interrupts

One story,  
two perspectives



Thread 1


while (true) {

  thread_yield()

}

System calls: one story,  
two perspectives

“return” from thread_switch into stub

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return thread_switch()

return thread_yield()

return from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

Thread 2


while (true) {

  thread_yield()

}

“return” from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

return from thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return thread_switch()

return thread_yield()

Processor’s viewpointIn-kernel thread’s viewpoint

Involuntary Kernel thread  
context switch

Save the thread’s state in the TCB

through a combination of hardware and software


Run kernel handler

can use stack of kernel thread to push variables 
used by handler


Restore next ready thread

Single-threaded 
processes: kernel threads

Globals

Heap

Code

PCB 1TCB 1 TCB 2 TCB 3

Process 1

PCB 2

Process 2

StackStackStackStackStack

1 2 1 2Each kernel thread has its own TCB and 
its own stack. 


Each user process has a stack at user-
level for executing user code and a kernel 
interrupt stack for executing interrupts 
and system calls.

Process 1

Stack

Globals

Heap

Code

Process 2

Stack

Globals

Heap

Code

Multi-threaded processes: 
kernel threads

Globals

Heap

Code

PCB 1

TCB 1 TCB 2 TCB 3

Process 1

TCB 1.A TCB 1.A TCB 1.A TCB 1.A

PCB 2
Process 2

Stack StackStackStackStackStackStack

Stack

Globals

Heap

Code

Stack
1 2

Stack

Globals

Heap

Code

Stack
1 2Each user-level thread has a user-

level stack and an interrupt stack in 
the kernel for executing interrupts 
and system calls.



User-level threads

No kernel support


Use upcalls to virtualize interrupts and exceptions

TCBs, ready list, finished list, waiting list — in user space


thread library calls are just procedure calls! 

Fun with concurrency

int a = 1, b = 2;

main() {

 CreateThread(&t1, fn1, 4);

 CreateThread(&t2, fn2, 5);

}

fn1(int arg1) {

 if(a) b++; 

}

fn2(int arg1) {

 a = arg1;

}

What are the value of a and b 
at the end of execution?

More fun with concurrency

int a = 1, b = 2;

main() {

 CreateThread(&t1, fn1, 4);

 CreateThread(&t2, fn2, 5);

}

fn1(int arg1) {

 if(a) b++; 

}

fn2(int arg1) {

 a = arg1;

}

What are the value of a and b 
at the end of execution?

Some More Examples

What are the possible values of x in these 
cases?

Thread1: x = 1;          Thread2: x = 2;

Initially y = 10; 

Thread1: x = y + 1;     Thread2: y = y * 2;

Initially x = 0; 

Thread1: x = x + 1;     Thread2: x = x + 2;



This is because …
Order of process/thread execution is non-deterministic

A system may contain multiple processors and cooperating threads/
processes can execute simultaneously

Thread/process execution can be interleaved because of time-slicing


Operations are often not atomic

An atomic operation is one that executes to completion without any 
interruption or failure---it is “all or nothing”


x := x+1 is not atomic

read x from memory into a register

increment register

store register back into memory


even loads and stores on 64 bit machines are not atomic


Goal: Ensure correctness under ALL possible interleaving

We have a problem...

Enumerating all cases is impractical


We need to 

define constructs to help with synchronization 
and coordination

develop a programming style that eases the 
construction of concurrent programs


restore modularity

more fundamentally, we need to know what we 
are talking about we we mention 
“synchronization” or “coordination”...


