
Concurrency

and Threads

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
VA

X-
11/

78
0)

Uniprocessor Performance
not Scaling

20%/year

52%/year

25%/year

Source: David Patterson

Power and Heat lay waste
to CPU makers

Intel P4 (2000-2007)

1.3GHz to 3.8GHz, 31 stage pipeline

“Prescott” in 02/04 was too hot. Needed 5.2GHz

to beat 2.6GHz Athlon

Intel Pentium Core, (2006-)

1.06GHz to 3GHz, 14 stage pipeline

Based on mobile (Pentium M) micro-architecture

Power efficient

2% of electricity in the U.S. feeds computers

Doubled in last 5 years

What about Moore’s law?

Number of transistors doubles every two years — not performance!

Transistor budget

We have an increasing glut of transistors

(at least for a few more years)

But we can’t use them to make things faster

what worked in the 90s blew up heat faster than
we can dissipate it

What to do?

make more cores!

Multicore is here -

plain and simple

Raise your hand if your laptop is single core

Your phone?

That’s what I thought

Multicore Programming:
Essential Skill

Hardware manufacturers betting big on multicore

Software developers are needed

Writing concurrent programs is not easy

You will learn how to do it in this class!

Processes and Threads
The Process abstraction combines two concepts

Concurrency: each process is a sequential execution
stream of instructions

Protection: Each process defines an address space
that identifies what can be touched by the program

Threads

Key idea: decouple concurrency from protection

A thread represents a sequential execution stream of
instructions

A process defines the address space that may be
shared by multiple threads

Thread: an abstraction
for concurrency

A single-execution stream of instructions that represents
a separately schedulable task

OS can run, suspend, resume thread at any time

bound to a process

Finite Progress Axiom: execution proceeds at some
unspecified, non-zero speed

Virtualizes the processor

programs run on machine with an infinite number of
processors (hint: not true)

Allows to specify tasks that should be run concurrently...

...and lets us code each task sequentially

Why threads?

To express a natural program structure

updating the screen, fetching new data, receiving user
input

To exploit multiple processors

different threads may be mapped to distinct processors

To maintain responsiveness

splitting commands, spawn threads to do work in the
background

Masking long latency of I/O devices

do useful work while waiting

How can they help?

Consider the following code segment:

for (k = 0; k < n; k++)

a[k] = b[k] × c[k] + d[k] × e[k]

Is there a missed opportunity here?

How can they help?

Consider a Web server

get network message from client

get URL data from disk

compose response

send response

How can they help?

Consider a Web server

get network message from client

get URL data from disk

compose response

send response

Create a number of threads, and for each thread do

What did we gain?

Overlapping I/O &
Computation

Request 1

Thread 1

Request 2

Thread 2

get network message
(URL) from client

(disk access latency)

get URL from disk

send data over network

get network message
(URL) from client

(disk access latency)

get URL from disk

send data over network

Time
Total time is less than Request 1 + Request 2

Processes vs. Threads
Processes

Have data/code/heap and other
segments

Include at least one thread

If a process dies, its resources
are reclaimed and its threads die

Interprocess communication via
OS and data copying

Have own address space, isolated
from other processes’

Each process can run on a
different processor

Expensive creation and context
switch

Processes

Threads

No data segment or heap

Needs to live in a process

More than one can be in a
process. First calls main.

If a thread dies, its stack is
reclaimed

Have own stack and registers,
but no isolation from other
threads in the same process

Inter-thread communication via
memory

Each thread can run on a
different processor

Inexpensive creation and context
switch

Implementing the thread
abstraction: the state

Shared

State

Per-Thread

State

Per-Thread

State

Heap

Global
Variables

Code

Thread Control Block
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Thread Control Block
(TCB)

Stack pointer

Thread metadata (ID, priority, etc)

Other Registers (PC, etc)

Stack

Stack frame

Stack frame

Stack frame

Stack frame

Note: No protection enforced at the thread level!

A simple API
void thread_create(thread, func, arg)

creates a new thread in thread, which will execute
function func with arguments arg

void thread_yield()

calling thread gives up the processor

thread_join(thread)

wait for thread to finish, then return the value
thread passed to sthread_exit.

thread_exit(ret)

finish caller; store ret in caller’s TCB and wake up any
thread that invoked sthread_join(caller)

Multithreaded Processing
Paradigms

User Space

Kernel

Dispatcher
Workers

Web page

cache

Dispatcher/Workers

Multithreaded Processing
Paradigms

User Space

Kernel

Specialists

Requests

Multithreaded Processing
Paradigms

User Space

Kernel

Pipelining

Request

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

TCB: being created

Registers: in TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

TCB: Ready list

Registers: in TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

TCB: Running list

Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

TCB: Ready list

Registers: in TCB

Thread yields

Scheduler suspends thread

(e.g. thread_yield())

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

Thread yields

Scheduler suspends thread

(e.g. thread_yield())

TCB: Running list

Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

Thread waits for event

(e.g. thread_join())

Thread yields

Scheduler suspends thread

(e.g. thread_yield())

TCB: Synchronization

variable’s waiting list

Registers: TCB

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

TCB: Ready list

Registers: in TCB

Thread yields

Scheduler suspends thread

(e.g. thread_yield()) Thread waits for event

(e.g. thread_join())

Event occurs

(e.g. other thread

calls thread_exit())

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

Thread yields

Scheduler suspends thread

(e.g. thread_yield()) Thread waits for event

(e.g. thread_join())

Event occurs

(e.g. other thread

calls thread_exit())

TCB: Running list

Registers: Processor

Threads Life Cycle

ReadyInit Running

Waiting

Finished

Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation

(e.g. thread_create())

Scheduler

resumes thread

Thread yields

Scheduler suspends thread

(e.g. thread_yield()) Thread waits for event

(e.g. thread_join())

Event occurs

(e.g. other thread

calls thread_exit())

TCB: Finished list (to pass
exit value), then deleted

Registers: TCB

Thread exit

(e.g. thread_exit())

One abstraction,

many flavors

Kernel-level threads

execute kernel code. Common in today’s OSs

Kernel level threads and single-threaded processes

system call handlers run concurrently with kernel threads

Multithreaded processes using kernel threads

thread within process make sys calls into kernel

User-level threads

thread ops in user-level library, without informing kernel

TCB in user level ready list

Context switching
in-kernel threads

You know the drill:

Thread is running

Switch to kernel

Save thread state (to TCB and stack)

Choose new thread to run

Load its state (from TCB and stack)

Thread is running

Context switching
in-kernel threads

You know the drill:

Thread is running

Switch to kernel

Save thread state (to TCB and stack)

Choose new thread to run

Load its state (from TCB and stack)

Thread is running

Policy decision left

to the scheduler{

What triggers
a context switch?

Voluntary event

via a call to the thread library:
thread_yield(), thread_wait(), thread_exit()

Involuntary event

e.g., timer or I/O interrupt; processor
exception

Voluntary Kernel thread
context switch

Defer interrupts

Choose next thread to run from ready list

Switch!

save register and stack of current thread in TCB

add current thread to ready list

switch to new thread’s stack

slurp in new thread’s state from its TCB

change state of new thread to RUNNING

Enable interrupts

One story,
two perspectives

Thread 1

while (true) {

 thread_yield()

}

System calls: one story,
two perspectives

“return” from thread_switch into stub

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return thread_switch()

return thread_yield()

return from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

Thread 2

while (true) {

 thread_yield()

}

“return” from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return from thread_switch()

return thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T1’s state to TCB

load T2’s state

return from thread_switch()

return from thread_yield()

call thread_yield()

choose another thread

call thread_switch()

save T2’s state to TCB

load T1’s state

return thread_switch()

return thread_yield()

Processor’s viewpointIn-kernel thread’s viewpoint

Involuntary Kernel thread
context switch

Save the thread’s state in the TCB

through a combination of hardware and software

Run kernel handler

can use stack of kernel thread to push variables
used by handler

Restore next ready thread

Single-threaded
processes: kernel threads

Globals

Heap

Code

PCB 1TCB 1 TCB 2 TCB 3

Process 1

PCB 2

Process 2

StackStackStackStackStack

1 2 1 2Each kernel thread has its own TCB and
its own stack.

Each user process has a stack at user-
level for executing user code and a kernel
interrupt stack for executing interrupts
and system calls.

Process 1

Stack

Globals

Heap

Code

Process 2

Stack

Globals

Heap

Code

Multi-threaded processes:
kernel threads

Globals

Heap

Code

PCB 1

TCB 1 TCB 2 TCB 3

Process 1

TCB 1.A TCB 1.A TCB 1.A TCB 1.A

PCB 2
Process 2

Stack StackStackStackStackStackStack

Stack

Globals

Heap

Code

Stack
1 2

Stack

Globals

Heap

Code

Stack
1 2Each user-level thread has a user-

level stack and an interrupt stack in
the kernel for executing interrupts
and system calls.

User-level threads

No kernel support

Use upcalls to virtualize interrupts and exceptions

TCBs, ready list, finished list, waiting list — in user space

thread library calls are just procedure calls!

Fun with concurrency

int a = 1, b = 2;

main() {

 CreateThread(&t1, fn1, 4);

 CreateThread(&t2, fn2, 5);

}

fn1(int arg1) {

 if(a) b++;

}

fn2(int arg1) {

 a = arg1;

}

What are the value of a and b
at the end of execution?

More fun with concurrency

int a = 1, b = 2;

main() {

 CreateThread(&t1, fn1, 4);

 CreateThread(&t2, fn2, 5);

}

fn1(int arg1) {

 if(a) b++;

}

fn2(int arg1) {

 a = arg1;

}

What are the value of a and b
at the end of execution?

Some More Examples

What are the possible values of x in these
cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

This is because …
Order of process/thread execution is non-deterministic

A system may contain multiple processors and cooperating threads/
processes can execute simultaneously

Thread/process execution can be interleaved because of time-slicing

Operations are often not atomic

An atomic operation is one that executes to completion without any
interruption or failure---it is “all or nothing”

x := x+1 is not atomic

read x from memory into a register

increment register

store register back into memory

even loads and stores on 64 bit machines are not atomic

Goal: Ensure correctness under ALL possible interleaving

We have a problem...

Enumerating all cases is impractical

We need to

define constructs to help with synchronization
and coordination

develop a programming style that eases the
construction of concurrent programs

restore modularity

more fundamentally, we need to know what we
are talking about we we mention
“synchronization” or “coordination”...

