
The Kernel
wants to be your friend



Boxing them in
Buggy apps can crash 
other apps


Buggy apps can crash OS


Buggy apps can hog all 
resources


Malicious apps can violate 
privacy of other apps

App 1 App 2 App 3

Operating System

Reading and writing memory, 
managing resources, accessing I/O...

Malicious apps can 
change the OS



The Process
An abstraction for protection


the execution of an application 
program with restricted rights


But there are tradeoffs 
(there always are tradeoffs!)


Must not hinder functionality

still efficient use of hardware

enable safe communication 

App 1

OS
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I know what you are thinking…Actually…



Special

Part of the OS


all kernel is in the OS


not all the OS is in the kernel


(why not? robustness)


widgets libraries, window managers etc



Process: 

Getting to know you

A process is a program during execution

program is a static file

process = executing program = program + execution state

Source code

compiler
Code

Header

Initialized data

Executable Image

Code Data Heap Stack Code Data Heap Stack Physical memory

OS copy



Keeping track of a process

A process has code

OS must track program counter 


A process has a stack

OS must track stack pointer


OS stores state of process       
in Process Control Block (PCB)


Data (program instructions, stack & heap) 
resides in memory, metadata is in PCB

PC 
Stack Pointer  

Registers 
PID 
UID 

Priority 
List of open files 
Process status 

…

Process Control 
Block



How can the OS 
enforce restricted rights?

Easy: kernel interprets each instruction!

slow

many instructions are safe: do we really need to involve 
the OS?
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Dual Mode Operation

hardware to the rescue: use a mode bit


in user mode, processor checks every instruction 

in kernel mode, unrestricted rights


hardware to the rescue (again) to make checks efficient



Efficient protection in   
dual mode operation
Privileged instructions


in user mode, no way to execute potentially unsafe 
instructions 


Memory protection

in user mode, memory accesses outside a process’ 
memory region are prohibited


Timer interrupts

kernel must be able to periodically regain control from 
running process

Efficient mechanism for switching modes +



I. Privileged instructions

Examples: Set mode bit; set accessible memory; 
disable interrupts; etc


But how can an app do I/O then?

system calls achieve access to kernel mode only at 
specific locations specified by OS 


Executing a privileged instruction while in user 
mode causes a processor exception....


...which passes control to the kernel



II. Memory Protection

Virtual address space: set of memory  
addresses that process can “touch”


CPU works with virtual addresses


Physical address space: set of memory 
addresses supported by hardware 

Virtual  
address  
space

Stack

Code

Initialized data

Heap

DLL’s

mapped segments

Step 1: Virtualize Memory



II. Memory Protection

Implement a function mapping                          

a486d9

5e3a07

Virtual Physical

Advantages:


protection

relocation

data sharing

multiplexing


⟨pid, virtual address⟩ physical address

pi

Step 2: Address Translation

into



Protection

At all times, the functions used by different 
processes map to disjoint ranges

pi

pj



Relocation

The range of the function used by a process 
can change over time

pi



Relocation

The range of the function used by a process 
can change over time

pi



Data Sharing

Map different virtual addresses of different 
processes to the same physical address

pi

pj
5e3a07

04d26a

119af3



Multiplexing

Create illusion of almost infinite memory by 
changing domain (set of virtual addresses) that 
maps to a given range of physical addresses

pi
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Multiplexing
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A simple mapping mechanism: 
Base & Bound

CPU

Bound

Register

Base

Register

1500

1000

0

MAXsys

500 1000

p’s physical 
address 
space

≤ +yes

no

Memory

Exception

Logical

addresses

Physical

addresses



On Base & Limit

Contiguous Allocation: contiguous virtual 
addresses are mapped to contiguous physical 
addresses

Protection is easy, but sharing is hard


Two copies of emacs: want to share code, but 
have data and stack distinct...


And there is more…

Hard to relocate

We want them as far as as possible in virtual 
address space, but...



III. Timer Interrupts

Hardware timer

can be set to expire after specified delay 
(time or instructions)

when it does, control is passed back to 
the kernel


Other interrupts (e.g. I/O completion) also 
give control to kernel



Crossing the line
user process

kernel

user process executing calls system call return from system call

execute system call

     trap


mode bit := 0

  mode bit := 1 


return

mode bit = 1

mode bit = 0



From user mode  
to kernel mode...

Interrupts

HW device requires OS service


timer, I/O device, interprocessor 

asynchronous

Exceptions 

user program acts silly (e.g. division by zero)

attempt to perform a privileged instruction


sometime on purpose! (breakpoints)


synchronous
System calls/traps


user program requests 
OS service

synchronous



...and viceversa

User-level upcall

a sort of user-level 
interrupt handling

q

If new process

copy program in memory, 

set PC and SP

toggle mode

pResume   after exception, 
interrupt or syscall


restore PC, SP, registers;

toggle mode

Switch to different process

load PC, SP, registers from   ’s 
PCB

toggles mode

q



Making the transition: 
Safe mode switch
Common sequences of instructions to cross 
boundary, which provide:


Limited entry

entry point in the kernel set up by kernel


Atomic changes to process state

PC, SP, memory protection, mode


Transparent restartable execution

user program must be restarted exactly as it 
was before kernel got control



Interrupt vector

0

handleTimerInterrupt() {
...

}

31

handleDivideByZero() {
...

}

128

255

handleTrap() {
...

}

32

Processor Register
Interrupt Vector

Hardware identifies why 
boundary is crossed


trap? 

interrupt (which 
device)? 

exception?


Hardware selects entry 
from interrupt vector

Appropriate handler is 
invoked



Interrupt stack

Stores execution context of interrupted process


HW saves SP, PC

Handler saves remaining registers


Stores handler’s local variables


Pointed by privileged register


One per process (or per thread!)


Why not use the stack in user’s space?



Interrupt masking

What if an interrupt occurs while running an 
interrupt handler?


Disable interrupts via privileged instruction

Overdramatic… it actually defers them


Just use the current SP of Interrupt stack



Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

EFLAGS

Other 
Registers:

EAX, EBX, 


...

SS:ESP

Stack segment Offset

CS:EIP

Code segment Offset
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Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupt

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

6. Invoke interrupt handler

7. Handler pushes all registers on stack

EFLAGS

SS:ESP

CS:EIP

Error

ALL Registers:

SS,ESP,CS,EIP, 
EAX, EBX,...



Switching back

From an interrupt, just reverse all steps!


From exception and system call, increment PC 
on return


on exception, handler changes PC at the 
base of the stack 

on system call, increment is done by hw 
when saving user level state



System calls

Programming interface to the 
services provided by the OS

Mostly accessed through an API 
(Application Programming Interface)


Win32, POSIX, Java API


Parameters passed according to 
calling convention


registers, stack, etc.

User Program

system call interface

open()

i

open()

implementation of 
open() system call

.

.

.


return



System call stubs

Set up parameters


call int 080 to context 
switch


Validate parameters

defend against errors in 
content and format of 
args


Copy before check

prevent TOCTOU


Copy back any result

User Kernel

open: 
movl #SysCall_Open, %eax 
int 080 
ret



The Skinny

System call 

interface

Portable OS Kernel

Portable OS Library

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

1802.11 a/b/g/n SCSI

Graphics accellerators LCD Screens

Web Browsers Email

Databases
Word Processing

Compilers
Web Servers

Syscall interface allows 
separation of concern


Innovation


Narrow


simple

powerful


highly portable

robust



Upcalls:  
virtualizing interrupts

Hardware-defined 
Interrupts & exceptions


Interrupt vector for 
handlers (kernel)


Interrupt stack (kernel)


Interrupt masking 
(kernel)


Processor state (kernel)


Kernel-defined signals


Handlers (user)


Signal stack (user)


Signal masking (user)


Processor State (user)

Interrupts/Exceptions Upcalls/Signals



Signaling

Why?

To terminate an application

To suspend it/resume it  (e.g., for debugging)

To alert of timer expiration


Upon receipt:

Ignore

Terminate process

Catch through handler



ID Name Default 
Action Corresponding Event

2 SIGINT Terminate Interrupt

(e.g., CTRL-C from keyboard)

9 SIGKILL Terminate Kill program

(cannot override or ignore)

14 SIGALRM Terminate Tmer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGSTP Stop until 
SIGCONT

Stop signal from terminal

(e.g., CTRL-Z from keyboard)

More on signals



Unix signals

foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Code

Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

     ...

}


Kernel

EFLAGS

SS:ESP
CS:EIP

HW copies

current user state

in Interrupt stack

1

Other 
Registers:

EAX, EBX, 


...

User-level

Process Registers



Unix signals
User-level

Process

foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Code

Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

     ...

}


Kernel

EFLAGS

SS:ESP
CS:EIP

Kernel copies

user state

on user stack

2

SS:ESP
CS:EIP
EFLAGS
Other 

Registers:

EAX, EBX,


…

SS:ESP
CS:EIP
EFLAGS
Other 

Registers:

EAX, EBX,


…

Registers



foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Code

Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

     ...

}


Kernel

EFLAGS

SS:ESP
CS:EIP

Kernel changes 

PC saved on

Interrupt stack

to point to handler

and SP to point

after state saved 

on user stack

3

SS:ESP’
CS:EIP'
EFLAGS
Other 

Registers:

EAX, EBX,


…

SS:ESP
CS:EIP
EFLAGS
Other 

Registers:

EAX, EBX,


…

User-level

Process Registers

Unix signals

SS:ESP
CS:EIP
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foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Code

Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP
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Interrupt Stack

Code

signal_handler() {

     ...

}


Kernel

Kernel exits;

Interrupt stack

copied back into

registers

4
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Process Registers
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foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Code

Stack Interrupt Stack

Code

signal_handler() {

     ...

}


Kernel

Signal handler

returns5

SS:ESP
CS:EIP
EFLAGS
Other 

Registers:

EAX, EBX,


…

User-level

Process Registers

Unix signals

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS:ESP’
CS:EIP’
SS:ESP
CS:EIP



Booting an OS Kernel

Basic Input/Output System


In ROM, includes the first instructions fetched and 
executed


BIOS copies bootloader, using a cryptographic signature 
to make sure it has not been tampered with 

BIOS

bootloader
OS Kernel
login app

bootloader
OS Kernel



Booting an OS Kernel

Bootloader copies OS kernel, checking its cryptographic 
signature

BIOS

bootloader
OS Kernel
login app

bootloader

OS Kernel



Booting an OS Kernel

Kernel initializes its data structures 


Starts first process by copying it from disk

BIOS

bootloader
OS Kernel
login app

bootloader OS Kernel

login app

Let the dance BEGIN!



Shall we dance?

All processes are progeny of that first process


Created with a little help from its friend…


…via system calls!



Starting a new process

A simple recipe:

Allocate & initialize PCB

Create and initialize a new address space

Load program into address space

Allocate user-level and kernel-level stacks

Initialize hw context to start execution at “start”

Copy arguments (if any) to the base of the user-
level stack

Inform scheduler process new process is ready

Transfer control to user-mode



Which API?
Windows: CreateProcess System Call


if (!CreateProcess(

    NULL,         // No module name (use command line)

    argv[1],      // Command line

    NULL,         // Process handle not inheritable

    NULL,         // Thread handle not inheritable

    FALSE,        // Set handle inheritance to FALSE

    0,            // No creation flags

    NULL,         // Use parent's environment block

    NULL,         // Use parent's starting directory

    &si,          // Pointer to STARTUPINFO structure

    &pi )         // Ptr to PROCESS_INFORMATION structure

)

Everything you might want to control… but wait!

CreateProcessAsUser


CreateProcessWithLogonW



Which API?
Unix: fork() and exec()

Creates a complete copy 
(child) of the invoking 
process (parent) — but 
for return value:


child := 0;      
parent := child’s pid

fork() exec()

Loads executable in memory & 
starts executing it


code, stack, heap are 
overwritten

the process is now running a 
different program!



The genius of 

fork() and exec()

To redirect stdin/stdout:

fork, close/open files, exec


To switch users:


fork, setuid, exec


To start a process with a different current 
directory:


fork, chdir, exec

You get the idea!
But what 
about 
overhead?



wait() and exit()

wait() causes parent to wait until child terminates

parent gets return value from child

if no children alive, wait() return immediately


exit() is called after program terminates

closes open files

deallocates memory

dellaocates most OS structures

checks if parent is alive. If so…



In action
/* See Figure 3.5 in textbook


#include <stdio.h>

#include <unistd.h>


int main() {


   int child_pid = fork();


   if (child_pid == 0) {        // child process                                                                                         

        printf("I am process #%d\n", getpid());

        return 0;

   } else {                     // parent process                                                                                                         

        printf("I am the parent of process #%d\n", child_pid);

        return 0;

   }

}



In action

pid = fork();

if (pid==0)


exec(B);

else

wait(pid);

Process 13

Program A

PC

pid
?

pid = fork();

if (pid==0)

exec(B);


else

wait(pid);

Process 13

Program A

pid

PC

14

pid = fork();

if (pid==0)

exec(B);


else

wait(pid);

Process 14

Program A

pid

PC

0

main() {

   …

}

PC

pid
0

Process 14

Program B



Shell

Runs programs on behalf of the user


Allows programmer to create/manage set of programs


sh     Original Unix shell (Bourne, 1977)


csh     BSD Unix C shell (tcsh enhances it)


bash    “Bourne again” shell


Every command typed in the shell starts a child 
process of the shell


