
The Kernel
wants to be your friend

Boxing them in
Buggy apps can crash
other apps

Buggy apps can crash OS

Buggy apps can hog all
resources

Malicious apps can violate
privacy of other apps

App 1 App 2 App 3

Operating System

Reading and writing memory,
managing resources, accessing I/O...

Malicious apps can
change the OS

The Process
An abstraction for protection

the execution of an application
program with restricted rights

But there are tradeoffs
(there always are tradeoffs!)

Must not hinder functionality

still efficient use of hardware

enable safe communication

App 1

OS

The Process
An abstraction for protection

the execution of an application
program with restricted rights

But there are tradeoffs
(there always are tradeoffs!)

Must not hinder functionality

still efficient use of hardware

enable safe communication

App 1

OS

I know what you are thinking…Actually…

Special

Part of the OS

all kernel is in the OS

not all the OS is in the kernel

(why not? robustness)

widgets libraries, window managers etc

Process:

Getting to know you

A process is a program during execution

program is a static file

process = executing program = program + execution state

Source code

compiler
Code

Header

Initialized data

Executable Image

Code Data Heap Stack Code Data Heap Stack Physical memory

OS copy

Keeping track of a process

A process has code

OS must track program counter

A process has a stack

OS must track stack pointer

OS stores state of process
in Process Control Block (PCB)

Data (program instructions, stack & heap)
resides in memory, metadata is in PCB

PC
Stack Pointer

Registers
PID
UID

Priority
List of open files
Process status

…

Process Control
Block

How can the OS
enforce restricted rights?

Easy: kernel interprets each instruction!

slow

many instructions are safe: do we really need to involve
the OS?

How can the OS
enforce restricted rights?

Easy: kernel interprets each instruction!

slow

many instructions are safe: do we really need to involve
the OS?

Dual Mode Operation

hardware to the rescue: use a mode bit

in user mode, processor checks every instruction

in kernel mode, unrestricted rights

hardware to the rescue (again) to make checks efficient

Efficient protection in
dual mode operation
Privileged instructions

in user mode, no way to execute potentially unsafe
instructions

Memory protection

in user mode, memory accesses outside a process’
memory region are prohibited

Timer interrupts

kernel must be able to periodically regain control from
running process

Efficient mechanism for switching modes +

I. Privileged instructions

Examples: Set mode bit; set accessible memory;
disable interrupts; etc

But how can an app do I/O then?

system calls achieve access to kernel mode only at
specific locations specified by OS

Executing a privileged instruction while in user
mode causes a processor exception....

...which passes control to the kernel

II. Memory Protection

Virtual address space: set of memory
addresses that process can “touch”

CPU works with virtual addresses

Physical address space: set of memory
addresses supported by hardware

Virtual
address
space

Stack

Code

Initialized data

Heap

DLL’s

mapped segments

Step 1: Virtualize Memory

II. Memory Protection

Implement a function mapping

a486d9

5e3a07

Virtual Physical

Advantages:

protection

relocation

data sharing

multiplexing

⟨pid, virtual address⟩ physical address

pi

Step 2: Address Translation

into

Protection

At all times, the functions used by different
processes map to disjoint ranges

pi

pj

Relocation

The range of the function used by a process
can change over time

pi

Relocation

The range of the function used by a process
can change over time

pi

Data Sharing

Map different virtual addresses of different
processes to the same physical address

pi

pj
5e3a07

04d26a

119af3

Multiplexing

Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

A simple mapping mechanism:
Base & Bound

CPU

Bound

Register

Base

Register

1500

1000

0

MAXsys

500 1000

p’s physical
address
space

≤ +yes

no

Memory

Exception

Logical

addresses

Physical

addresses

On Base & Limit

Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

Protection is easy, but sharing is hard

Two copies of emacs: want to share code, but
have data and stack distinct...

And there is more…

Hard to relocate

We want them as far as as possible in virtual
address space, but...

III. Timer Interrupts

Hardware timer

can be set to expire after specified delay
(time or instructions)

when it does, control is passed back to
the kernel

Other interrupts (e.g. I/O completion) also
give control to kernel

Crossing the line
user process

kernel

user process executing calls system call return from system call

execute system call

 trap

mode bit := 0

 mode bit := 1

return

mode bit = 1

mode bit = 0

From user mode
to kernel mode...

Interrupts

HW device requires OS service

timer, I/O device, interprocessor

asynchronous

Exceptions

user program acts silly (e.g. division by zero)

attempt to perform a privileged instruction

sometime on purpose! (breakpoints)

synchronous
System calls/traps

user program requests
OS service

synchronous

...and viceversa

User-level upcall

a sort of user-level
interrupt handling

q

If new process

copy program in memory,

set PC and SP

toggle mode

pResume after exception,
interrupt or syscall

restore PC, SP, registers;

toggle mode

Switch to different process

load PC, SP, registers from ’s
PCB

toggles mode

q

Making the transition:
Safe mode switch
Common sequences of instructions to cross
boundary, which provide:

Limited entry

entry point in the kernel set up by kernel

Atomic changes to process state

PC, SP, memory protection, mode

Transparent restartable execution

user program must be restarted exactly as it
was before kernel got control

Interrupt vector

0

handleTimerInterrupt() {
...

}

31

handleDivideByZero() {
...

}

128

255

handleTrap() {
...

}

32

Processor Register
Interrupt Vector

Hardware identifies why
boundary is crossed

trap?

interrupt (which
device)?

exception?

Hardware selects entry
from interrupt vector

Appropriate handler is
invoked

Interrupt stack

Stores execution context of interrupted process

HW saves SP, PC

Handler saves remaining registers

Stores handler’s local variables

Pointed by privileged register

One per process (or per thread!)

Why not use the stack in user’s space?

Interrupt masking

What if an interrupt occurs while running an
interrupt handler?

Disable interrupts via privileged instruction

Overdramatic… it actually defers them

Just use the current SP of Interrupt stack

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

EFLAGS

Other
Registers:

EAX, EBX,

...

SS:ESP

Stack segment Offset

CS:EIP

Code segment Offset

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

EFLAGS

SS:ESP
CS:EIP

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

EFLAGS

SS:ESP

CS:EIP

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

EFLAGS

SS:ESP

CS:EIP

Error

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupts

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

6. Invoke interrupt handler

EFLAGS

SS:ESP

CS:EIP

Error

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

EFLAGS

SS:ESP

CS:EIP

Error

1. Disable interrupt

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

6. Invoke interrupt handler

7. Handler pushes all registers on stack

Mode switch on x86
User-level

Process Registers Kernel

Code
foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Stack

Code

handler() {

 pusha

 ...

}

Interrupt Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

1. Disable interrupt

2. Save key registers

3. Switch onto the kernel interrupt stack

4. Push key registers onto new stack

5. Save error code (optional)

6. Invoke interrupt handler

7. Handler pushes all registers on stack

EFLAGS

SS:ESP

CS:EIP

Error

ALL Registers:

SS,ESP,CS,EIP,
EAX, EBX,...

Switching back

From an interrupt, just reverse all steps!

From exception and system call, increment PC
on return

on exception, handler changes PC at the
base of the stack

on system call, increment is done by hw
when saving user level state

System calls

Programming interface to the
services provided by the OS

Mostly accessed through an API
(Application Programming Interface)

Win32, POSIX, Java API

Parameters passed according to
calling convention

registers, stack, etc.

User Program

system call interface

open()

i

open()

implementation of
open() system call

.

.

.

return

System call stubs

Set up parameters

call int 080 to context
switch

Validate parameters

defend against errors in
content and format of
args

Copy before check

prevent TOCTOU

Copy back any result

User Kernel

open:
movl #SysCall_Open, %eax
int 080
ret

The Skinny

System call

interface

Portable OS Kernel

Portable OS Library

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

1802.11 a/b/g/n SCSI

Graphics accellerators LCD Screens

Web Browsers Email

Databases
Word Processing

Compilers
Web Servers

Syscall interface allows
separation of concern

Innovation

Narrow

simple

powerful

highly portable

robust

Upcalls:
virtualizing interrupts

Hardware-defined
Interrupts & exceptions

Interrupt vector for
handlers (kernel)

Interrupt stack (kernel)

Interrupt masking
(kernel)

Processor state (kernel)

Kernel-defined signals

Handlers (user)

Signal stack (user)

Signal masking (user)

Processor State (user)

Interrupts/Exceptions Upcalls/Signals

Signaling

Why?

To terminate an application

To suspend it/resume it (e.g., for debugging)

To alert of timer expiration

Upon receipt:

Ignore

Terminate process

Catch through handler

ID Name Default
Action Corresponding Event

2 SIGINT Terminate Interrupt

(e.g., CTRL-C from keyboard)

9 SIGKILL Terminate Kill program

(cannot override or ignore)

14 SIGALRM Terminate Tmer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGSTP Stop until
SIGCONT

Stop signal from terminal

(e.g., CTRL-Z from keyboard)

More on signals

Unix signals

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

EFLAGS

SS:ESP
CS:EIP

HW copies

current user state

in Interrupt stack

1

Other
Registers:

EAX, EBX,

...

User-level

Process Registers

Unix signals
User-level

Process

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

EFLAGS

SS:ESP
CS:EIP

Kernel copies

user state

on user stack

2

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

Registers

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

EFLAGS

SS:ESP
CS:EIP

Kernel changes

PC saved on

Interrupt stack

to point to handler

and SP to point

after state saved

on user stack

3

SS:ESP’
CS:EIP'
EFLAGS
Other

Registers:

EAX, EBX,

…

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

User-level

Process Registers

Unix signals

SS:ESP
CS:EIP

SS:ESP’
CS:EIP’
EFLAGS
Other

Registers:

EAX, EBX,

…

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP
CS:EIP

Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

Kernel exits;

Interrupt stack

copied back into

registers

4

SS:ESP’
CS:EIP'
EFLAGS
Other

Registers:

EAX, EBX,

…

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

User-level

Process Registers

Unix signals

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP’
CS:EIP’

Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

Kernel exits;

Interrupt stack

copied back into

registers

4

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

User-level

Process Registers

Unix signals

foo() {

 while(...) {

 x = x+1;

 y = y-2

 }

}

Code

Stack Interrupt Stack

Code

signal_handler() {

 ...

}

Kernel

Signal handler

returns5

SS:ESP
CS:EIP
EFLAGS
Other

Registers:

EAX, EBX,

…

User-level

Process Registers

Unix signals

Other
Registers:

EAX, EBX,

...

EFLAGS

SS:ESP’
CS:EIP’
SS:ESP
CS:EIP

Booting an OS Kernel

Basic Input/Output System

In ROM, includes the first instructions fetched and
executed

BIOS copies bootloader, using a cryptographic signature
to make sure it has not been tampered with

BIOS

bootloader
OS Kernel
login app

bootloader
OS Kernel

Booting an OS Kernel

Bootloader copies OS kernel, checking its cryptographic
signature

BIOS

bootloader
OS Kernel
login app

bootloader

OS Kernel

Booting an OS Kernel

Kernel initializes its data structures

Starts first process by copying it from disk

BIOS

bootloader
OS Kernel
login app

bootloader OS Kernel

login app

Let the dance BEGIN!

Shall we dance?

All processes are progeny of that first process

Created with a little help from its friend…

…via system calls!

Starting a new process

A simple recipe:

Allocate & initialize PCB

Create and initialize a new address space

Load program into address space

Allocate user-level and kernel-level stacks

Initialize hw context to start execution at “start”

Copy arguments (if any) to the base of the user-
level stack

Inform scheduler process new process is ready

Transfer control to user-mode

Which API?
Windows: CreateProcess System Call

if (!CreateProcess(

 NULL, // No module name (use command line)

 argv[1], // Command line

 NULL, // Process handle not inheritable

 NULL, // Thread handle not inheritable

 FALSE, // Set handle inheritance to FALSE

 0, // No creation flags

 NULL, // Use parent's environment block

 NULL, // Use parent's starting directory

 &si, // Pointer to STARTUPINFO structure

 &pi) // Ptr to PROCESS_INFORMATION structure

)

Everything you might want to control… but wait!

CreateProcessAsUser

CreateProcessWithLogonW

Which API?
Unix: fork() and exec()

Creates a complete copy
(child) of the invoking
process (parent) — but
for return value:

child := 0;
parent := child’s pid

fork() exec()

Loads executable in memory &
starts executing it

code, stack, heap are
overwritten

the process is now running a
different program!

The genius of

fork() and exec()

To redirect stdin/stdout:

fork, close/open files, exec

To switch users:

fork, setuid, exec

To start a process with a different current
directory:

fork, chdir, exec

You get the idea!
But what
about
overhead?

wait() and exit()

wait() causes parent to wait until child terminates

parent gets return value from child

if no children alive, wait() return immediately

exit() is called after program terminates

closes open files

deallocates memory

dellaocates most OS structures

checks if parent is alive. If so…

In action
/* See Figure 3.5 in textbook*/

#include <stdio.h>

#include <unistd.h>

int main() {

 int child_pid = fork();

 if (child_pid == 0) { // child process

 printf("I am process #%d\n", getpid());

 return 0;

 } else { // parent process

 printf("I am the parent of process #%d\n", child_pid);

 return 0;

 }

}

In action

pid = fork();

if (pid==0)

exec(B);

else

wait(pid);

Process 13

Program A

PC

pid
?

pid = fork();

if (pid==0)

exec(B);

else

wait(pid);

Process 13

Program A

pid

PC

14

pid = fork();

if (pid==0)

exec(B);

else

wait(pid);

Process 14

Program A

pid

PC

0

main() {

 …

}

PC

pid
0

Process 14

Program B

Shell

Runs programs on behalf of the user

Allows programmer to create/manage set of programs

sh Original Unix shell (Bourne, 1977)

csh BSD Unix C shell (tcsh enhances it)

bash “Bourne again” shell

Every command typed in the shell starts a child
process of the shell

