
Operating Systems

Lorenzo Alvisi     Anne Bracy

Spring 2017

CS 4410 - CS 4411

These slides build upon many rounds of teaching CS 4410
by Professors Sirer, Bracy, van Renesse, George, Agarwal 



About Prof. Bracy

Professional Interests


Teaching: intro to programming, digital design, computer 
architecture, system software, operating systems


Research: microarchitecture, instruction fusion


Past:


Educated @ Stanford & University of Pennsylvania


Worked @ WashU in St. Louis & Intel Labs


Other pursuits: novice skier, intemediate jazz 
conoisseur, advanced toddler wrangler



About Prof. Alvisi

Research interests: building scalable distributed 
 systems that can be depended upon


PC Chair of SOSP ’17


Undergrad in Physics at         ; Ph.D. in CS at


Taught at 


Other pursuits: motorcycling, classical music, 
traveling 



About You

?



Meet the OS

Software that manages a computer’s 
resources


Makes it easier to write the applications 
you want to write


Makes you want to use the applications 
you wrote by running them efficiently



Why study  
Operating Systems?  



Why study  
Operating Systems?  
To learn how to manage complexity through 
appropriate abstractions


infinite CPU, infinite memory, files, locks, etc.


To learn about design


performance vs. robustness, functionality vs. 
simplicity, HW vs. SW, etc.


To learn how computers work


Because OSs are everywhere!



Where’s the OS?  
Las Vegas



Where’s the OS?  
New York



What will the 
course be like?









White
Dan Flavin

Monument

1965

+

+
1978

Ti
+

Zn

Robert Ryman

Series #5

2005



Cambia, Todo Cambia

1981 1996 2011 Factor
MIPS 1 300 10000 10K

$/MIPS $100K $30 $0.50 200K
DRAM 128KB 128MB 10GB 100K
Disk 10MB 4GB 1TB 100K
Home 

Internet 9.6Kbps 256 Kbps 5Mbps 500

LAN 
Network

3Mbps 
(shared) 10 Mbps 1Gbps 300

# Users 100 100 Mb/s <<1 100+



Painting

Order


Design


Tension


Balance


Harmony

Reliability


Availability


Portability


Efficiency


Security

System 
building

*

*Sondheim: Sunday in the Park with George



Logistics

Lectures

4410: Tu-Th 1:25-2:40pm, Olin 155


4411: F: 2:30-3:30pm, Hollister B14 (～every 2 weeks)


Instructors:


Office Hours

Professor Alvisi: M: 6:00-8:00pm


Professor Bracy: M: 11:00-12:00pm · Tu: 3:00-4:00pm


TAs — a small army at your disposal!



Our Expectations
Code of Silence


Absolute quiet during lectures


Except (duh!) for questions!  Please ask!


Luddite Zone

Numerous studies show that such classrooms are far 
more effective (pioneered by Cornell: “The Laptop and 
the Lecture”, 2003)


You learn more, so do the people around you!



Communicating
Web Page: http://www.cs.cornell.edu/Courses/cs4410


Office hours, assignments, lectures, and other supplemental 
materials will be on the web site


Piazza: http://piazza.com/cornell/spring2017/cs4410, 
http://piazza.com/cornell/spring2017/cs4411 (soon)


Public posts: for everyone

Don’t post code

Use posts, not email


Private posts: for instructor/TA eyes only


Personal emergencies: email cs4410-prof@cornell.edu 
(goes to us both)



Assignments/
Projects

Code distributed through 
github


http://
github.coecis.cornell.edu 


we’ll need your ids — more 
on this later


Submissions through CMS

Administrative

You are expected to keep up with 


Lectures and Readings


Exams


Assignments (4410) and Projects 
(4411)


Textbook


Anderson and Dahlin (1st or 2nd 
edition)


Subset of Kurose and Ross “Computer 
Networking: A Top-Down Approach”.



Grading
CS4410

～48% Programming Assignments*


～50% Exams (best 2 of 3)


～2% Course evaluation, etc.


CS4411

～98% Projects


～2% Course evaluation, etc.


Grading will not be on a curve

We want to give everyone an A+

It’s a time trial: you are not running against your peers


* if you are enrolled in both 4410 and 4411, your 4410 Programming 
Assignments grade will be 12% A1, 12% A2, 24% the average of your 
6 Prac project grades



Programming Assignments 
(CS4410)

4 assignments

Shell


Concurrent programming


Networking


File systems


To be done individually


4 slip days — at most 2 per assignment

Start early! Time management is key



Projects 

(CS4411)

6 project, to be done in teams of 2

Threads and Concurrency


Basic Datagram Networking


Routing


Google form to indicate team’s composition

No partner? We’ve got a Google form for that too! Or search on Piazza


Working in pairs

Start early; time management is key; Manage the team effort


Don’t let your team member down


4 slip days — at most 1 per assignment

Scheduling


Reliable Streaming Protocol


File Systems



Academic Integrity and 
Honor Code

Project groups submit joint work


All programming assignments must be your own independent work


Group projects must represent solely the work of the two 
members of the group


OK to study together (with the Game of Thrones rule) but never 
look at someone else’s code (fellow student, or online, or…)


Violations are easy to detect & will be prosecuted


Closed book exams, no calculators

All submitted work must be your own 
(CS4410) or your group’s (CS4411)



Prerequisites

We are checking your prerequisites


informally CS3410; or cs3420; or equivalent 
course on “Architecture & Systems Software” 


If you don’t meet them, we’ll contact you



Questions?



Running a Web Server

How does the OS 

allow multiple applications to communicate with each other?


handle multiple concurrent requests?

support access to shared data (such as the cache)?


protect against malicious scripts?

enable different apps to share the data they have produced?

support consistent changes to complex data structures?


handle clients and servers of different speed?

transparently move to more powerful hardware?

Client Server x.html
1. Get x.html 2. Read

4. Data 3. Data



Course objective

CS4410/4411



Leg 1

1. Learn how to approach complex problems


Fundamental issues  

coordination, abstraction


Explore design space


Examine case studies 


Goal: Forever mutate your brain (Mwahahahaahhaha!)


Timescale: Big, long-term payoff



Leg 2

2. Learn how to apply specific techniques


Debug complex systems 


Time-tested solutions to hard problems 


Hacking will not succeed

concurrent programming, transactions, etc


Goal: Be a good engineer


Timescale: Now — and in 20 years



Leg 3

3.  Learn how, in detail, current OSs work


FS, network stack, internal data structures, 
VM... of  


MacOS, Linux, iOS, Windows


Goal: Well… know in detail how current OSs 
work!


Timescale: Better be now, because all will 
change tomorrow



What is an OS?

An Operating System implements a virtual 
machine whose interface is more convenient* 
that the raw hardware interface

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical Machine 

Interface

* easier to use, simpler to code, more reliable, more secure...

“All the code you did not write”



More than one hat

Referee 


Illusionist


Glue



More than one hat

Referee 


Illusionist


Glue

Manages shared resources such as CPU, memory, 
disks, networks, displays, cameras, etc.




More than one hat

Referee 

Manages shared resources such as CPU, memory, 
disks, networks, displays, cameras, etc.


Illusionist

Look! Infinite memory! Your own private processor!


Glue



More than one hat

Referee 

Manages shared resources such as CPU, memory, 
disks, networks, displays, cameras, etc.


Illusionist

Look! Infinite memory! Your own private processor!


Glue

Offers a set of common services (e.g. U.I. routines)


Separates apps from I/O devices



OS as a referee
Resource allocation


When multiple concurrent tasks, how does OS decide 
who gets how much?


Isolation

A faulty app should not disrupt other apps or OS


OS must export less than full power of underlying 
hardware


Communication/Coordination

Apps need to coordinate and share state


Web site: select ads, cache recent data, fetch/
merge data from disk, etc



OS as an illusionist
Illusion of resources that are not physically 
present


Virtualization


processor, memory, screen space, disk, network



OS as an illusionist
Illusion of resources that are not physically 
present


Virtualization


processor, memory, screen space, disk, network


We can virtualize the entire computer!


fooling the illusionist itself!


ease of debugging, portability, isolation

Operating System (VMM)

App

Hardware

Guest OSGuest OSApp

App App

Virtual Machine

Interface



OS as an illusionist

Illusion of resources that are not physically 
present


Atomic operations


hardware guarantees atomicity at the word level


what happens during concurrent updates to 
complex data structures?


what if computer crashes during a block write? 


at the hardware level, packets are lost…


Reliable communication channels



OS as a glue

Offers standard services to simplify app 
design and facilitate sharing


send/receive of byte streams


read/write files 


pass messages


share memory


UI


Decouples hardware and app development 

...but database may need to be aware of specific disk 
drive



What makes a good OS?

The right set of abstractions

A good abstraction:

is portable and hides implementation details


has an intuitive and easy-to-use interface


can be installed many times


is efficient and reasonably easy to implement



OS: a collection of 
abstractions

Processes      (abstract CPU and RAM)


Files        (abstract disks)


Network endpoints  (abstract NIC)


Windows      (abstract screens)


…

Think of them as objects with state and methods



Issues in OS Design
Structure: how is the OS organized?


Concurrency: how are parallel activities created and 
controlled?


Sharing: how are resources shared?


Naming: how are resources named by users?


Protection: how are distrusting parties protected from 
each other?


Security: how to authenticate, authorize, and ensure 
privacy?


Performance: how to make it fast?



More issues in OS Design
Reliability: how do we deal with failures??


Portability: how to write once, run anywhere?


Extensibility: how do we add new features?


Communication: how do we exchange information?


Scale: what happens as demands increase?


Persistence: how do we make information outlast the 
processes that created it?


Accounting: who pays the bill and how do we control 
resource usage?



A Short History of  
Operating Systems



History of  
Operating Systems

Phase 1: Hardware is expensive, humans are cheap 
User at console: single-user systems 
Batching systems 
Multi-programming systems



Hand programmed 
machines (1945-1955)

Single user systems 

OS = loader + libraries of 
common subroutines 

Problem: low utilization of  
expensive components

observation interval
=  % utilization

time device busy



Batch Processing 
(1955-1965)

Operating system = loader + sequencer 
+ output processor

Tape

Tape

Input
Compute

Output

Card 
Reader

Printer

Tape Tape

Operating System

“System Software”

User Program

User Data



Multiprogramming 
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

program P
begin
   :
  Read(var)
   :  
end P

system call Read()
begin
  StartIO(input device)
  WaitIO(interrupt)
  EndIO(input device)
   :  
end Read



Multiprogramming 
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O Device

k: read()

k+1:

endio()
interrupt

main{

}

}

OS

read{

startIO()
waitIO()



Multiprogramming 
(1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O Device

k: read()

k+1:
interrupt

main{

}

OS

read{

startIO()

endio{

}
schedule()

main{
}
schedule()

Program 2



Phase 1: Hardware is expensive, humans are cheap 
User at console: single-user systems 
Batching systems 
Multi-programming systems 

Phase 2: Hardware is cheap, humans are expensive 
Time sharing: Users use cheap terminals and share servers

History of  
Operating Systems



Timesharing (1970-)

A timer interrupt is used to multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 Program 2

k: 

k+1:

main{

OS

schedule(){

}
main{

timer 
interrupt

timer 
interrupt

schedule(){

schedule(){

}timer 
interrupt



Phase 1: Hardware is expensive, humans are cheap 
User at console: single-user systems 
Batching systems 
Multi-programming systems 

Phase 2: Hardware is cheap, humans are expensive 
Time sharing: Users use cheap terminals and share servers 

Phase 3: Hardware is very cheap, humans are very expensive 
Personal computing: One system per user 
Distributed computing: many systems per user 
Ubiquitous computing: LOTS of  systems per users

History of  
Operating Systems



Operating Systems for 
PCs

Personal computing systems 
Single user 
Utilization no longer a concern 
Emphasis on user interface and API 
Many services & features not present 

Evolution 
Initially: OS as a simple service 
provider (simple libraries) 
Now: Multi-application systems with 
support for coordination



57

Distributed  
Operating Systems

Abstraction: a multi-processor system as a single processor one. 

New challenges in consistency, reliability, resource management, 
performance, etc. 

Examples: SANs, Oracle Parallel Server

OS 
process

management

User 
Program

OS 
process management
memory management

User 
Program

CPU

OS 
file system

name services
mail services

Network

CPU CPU



Ubiquitous Computing

Challenges 
Small memory size 
Slow processor 
Battery concerns 
Scale 
Security  
Naming



Genealogy of modern 
Operating Systems 

MVS (60’s)

MSDOS (70’s)

Windows (80’s)

Windows

Mobile Windows NT (90’s)

Windows 8

VMS  (70’s)

Multics (60’s)

UNIX (70’s)

BSD UNIX (80’s)

Free BSD LINUX 

(90’s-today)

Android

Mach (80’s)

Mac OSX

iOS

Mac OSNEXT

VM370 (70’s)

VMWare


