Operating Systems
CS 4410 - CS 4411

Lorenzo Alvisi Anne Bracy
Spring 2017

These slides build upon many rounds of teaching CS 4410

by Professors Sirer, Bracy, van Renesse, George, Agarwal

About Prof. Bracy

® Professional Interests

o Teaching: intro to programming, digital design, computer
architecture, system software, operating systems

0 Research: microarchitecture, instruction fusion

@ Past:
0 Educated @ Stanford & University of Pennsylvania

0 Worked @ WashU in St. Louis & Intel Labs

@ Other pursuits: novice skier, infemediate jazz

conoisseur, advanced toddler wrangler
LIS

About Prof. Alvisi

@ Research interests: building scalable distributed
systems that can be depended upon

0 PC Chair of SOSP ‘17

MAN-PEANCKR-GESELLSCHAET

@ Other pursuits: motorcycling, classical music,
traveling

About You

Meet the OS

@ Software that manages a computers
resources

0O Makes it easier to write the applications
you want to write

0 Makes you want to use the applications
you wrote by running them efficiently

Why study
Operating Systems?

Why study
Operating Systems?

@ To learn how to manage complexity through
appropriate abstractions

o infinite CPU, infinite memory, files, locks, efc.

@ To learn about design

0 performance vs. robustness, functionality vs.
simplicity, HW vs. SW, etc.

@ To learn how computers work

@ Because OSs are everywhere!

e ST B B et e e TR

B,

Wheres the 0S?
Las Vegas

FLICTCCL
nn Station
\ G F [N Enter across 24 St

Wheres the 0S?
New York

What will the
course be like?

o

A

Robert Ryman
Series #5
2005

Dan Flavin
Monument
1965

Cambia, Todo Cambia

1981 1996 2011 Factor
MIPS | 300 10000 10K
$/MIPS $100K $30 $0.50 200K
DRAM 128KB 128MB 10GB 1{0]0],4
Disk 10MB 4GB 1TB 1{0]0],4
Home
Intornet 9.6Kbps | 256 Kbps 5Mbps 500
LAN 3Mbps
Network | (shared) 10 Soh Ty
Users 100 100 Mb/s «l 100+

Painting’

0 Order
0 Design
o Tension
o0 Balance

o Harmony

*Sondheim: Sunday in the Park with George

System
building

0 Reliability
o Availability
0 Portability
o Efficiency

O Security

Logistics

@ Lectures
0 4410: Tu-Th 1:25-2:40pm, Olin 155

O 4411: F: 2:30-3:30pm, Hollister Bl4 (~every 2 weeks)

@ Instructors: B]‘ ??3

@ Office Hours

O Professor Alvisi: M: 6:00-8:00pm
O Professor Bracy: M: 11:00-12:00pm * Tu: 3:00-4:00pm

0 TAs — a small army at your disposal!

Our Expectations

@ Code of Silence
O Absolute quiet during lectures

0 Except (duh!) for questions! Please ask!

@ Luddite Zone

0 Numerous studies show that such classrooms are far
more effective (pioneered by Cornell: "The Laptop and
the Lecture”, 2003)

0 You learn more, so do the people around you!

Communicating

@ Web Page: http://www.cs.cornell.edu/Courses/cs4410

o Office hours, assignments, lectures, and other supplemental
materials will be on the web site

® Piazza: http://piazza.com/cornell /spring2017/cs4410,
http://piazza.com/cornell /spring2017/cs4411 (soon)

DO Public posts: for everyone
» Dont post code

» Use posts, not email

o Private posts: for instructor/TA eyes only

@ Personal emergencies: email cs4410-prof@cornell.edu
(goes to us both)

Assignments/

Oralgit) Administrative

@ Code distributed through @ You are expected to keep up with

github o Lectures and Readings
0 http:// o Exams

github.coecis.cornell.edu

o Assignments (4410) and Projects

o we'll need your ids — more (4411)

on this later o TosTio

@ Submissions through CMS o Anderson and Dahlin (Ist or 2nd

edition)

D Subset of Kurose and Ross "Computer
Networking: A Top-Down Approach”.

Grading

@ CS4410

0~ 48% Programming Assignments™
o ~50% Exams (best 2 of 3)

o ~ 2% Course evaluation, etc.

@ CS4411
o ~98% Projects

o ~ 2% Course evaluation, etc.

@ Grading will not be on a curve
o We want fo give everyone an A+

o Its a time trial: you are not running against your peers

*if you are enrolled in both 4410 and 4411, your 4410 Programming
Assignments grade will be 12% Al, 12% A2, 24% the average of your
6 Prac project grades

Programming Assignments
(Y ¥510)

@ 4 assignments
o Shell
o Concurrent programming
o Networking

o File systems

@ To be done individually

@ 4 slip days — at most 2 per assignment

Start early! Time management is key

Projects
(CS4411)

@ 6 project, to be done in teams of 2

o Threads and Concurrency o Scheduling
0 Basic Datagram Networking o Reliable Streaming Protocol
o Routing O File Systems

® Google form to indicate teams composition

o No partner? We've got a Google form for that too! Or search on Piazza
@ Working in pairs

0 Start early; time management is key; Manage the team effort

o Dont let your team member down

@ 4 slip days — at most 1 per assignment

Academic Integrity and
Honor Code

All submitted work must be your own
(CS4410) or your groups (CS4411)

@ Project groups submit joint work

o All programming assignments must be your own independent work

0 Group projects must represent solely the work of the two
members of the group

0 OK to study together (with the Game of Thrones rule) but never
look at someone elses code (fellow student, or online, or...)

@ Closed book exams, no calculators

Prerequisites

@ We are checking your prerequisites

0 informally CS3410; or ¢s3420; or equivalent
course on ‘Architecture & Systems Software”

@ If you dont meet them, we'll contact you

Questions?

Running a Web Server

ead
1. Get x.html pte 2

Server

4. Data (3\

- Datq

\ 4

§18

® How does the OS
o allow mulfiple applications to communicate with each other?
o handle multiple concurrent requests?
o support access to shared data (such as the cache)?
o protect against malicious scripts?
o enable different apps fo share the data they have produced?
o support consistent changes fo complex data structures?
o handle clients and servers of different speed?

o transparently move to more powerful hardware?
s

Course objective

/
/M’
O/

Leg 1

1. Learn how to approach complex problems

® Fundamental issues
@ coordination, abstraction

@ Explore design space

@ Examine case studies
@ Goal: Forever mutate your brain waananashhana
@ Timescale: Big, long-term payoff

Leg 2

2. Learn how fo apply specific techniques
o Debug complex systems
o Time-tested solutions to hard problems

o Hacking will not succeed
» concurrent programming, transactions, etc

@ Goal: Be a good engineer

@ Timescale: Now — and in 20 years

Leg 3

3. Learn how, in detail, current OSs work

o FS, network stack, internal data structures,
VM... of

» MacOS, Linux, iOS, Windows

® Goal: Well... know in detail how current OSs
work!

® Timescale: Better be now, because all will
change tomorrow

What i1s an OS?

@ An Operating System implements a virtual
machine whose interface is more convenient™
that the raw hardware interface

OS Interface

Physical Machine
Interface

* easier to use, simpler to code, more reliable, more secure...

"All the code you did not write”

More than one hat

® Referee

@ Illusionist

@ Glue

More than one hat

® Referee

0 Manages shared resources such as CPU, memory,
disks, networks, displays, cameras, etc.

@ Illusionist

@ Glue

More than one hat

® Referee

O Manages shared resources such as CPU, memory,
disks, networks, displays, cameras, etc.

@ Illusionist

D Look! Infinite memory! Your own private processor!

@ Glue

More than one hat

® Referee

O Manages shared resources such as CPU, memory,
disks, networks, displays, cameras, etc.

@ Illusionist

D Look! Infinite memory! Your own private processor!

@ Glue
0 Offers a set of common services (e.g. U.I routines)
o Separates apps from I/0 devices

OS as a referee

@ Resource allocation

0 When multiple concurrent tasks, how does OS decide
who gets how much?

@ Isolation
o A faulty app should not disrupt other apps or OS

> OS must export less than full power of underlying
hardware

@ Communication/Coordination
o Apps need to coordinate and share state

> Web site: select ads, cache recent data, fetch/
merge data from disk, etc

OS as an illusionist

@ Illusion of resources that are not physically
present

D Virtualization

» processor, memory, screen space, disk, network

OS as an illusionist

@ Illusion of resources that are not physically
present

O Virtualization
» processor, memory, screen space, disk, network
> We can virtualize the entire computer!
— fooling the illusionist itself!

— ease of debugging, portability, isolation

Virtual Machine
Interface

OS as an illusionist

@ Illusion of resources that are not physically
present

o Atomic operations
> hardware guarantees atomicity at the word level

— what happens during concurrent updates to
complex data structures?

— what if computer crashes during a block write?
» at the hardware level, packets are lost...

0 Reliable communication channels

OS as a glue

@ Offers standard services to simplify app
design and facilitate sharing

0 send/receive of byte streams
0 read/write files
O pass messages

O share memory

n UI

@ Decouples hardware and app development

D ..but database may need to be aware of specific disk
drive

What makes a good OS?

The right set of abstractions

A good abstraction:

D is portable and hides implementation details
O has an intuitive and easy-to-use interface
0 can be installed many times

D is efficient and reasonably easy to implement

OS: a collection of

abstractions
@ Processes (abstract CPU and RAM)
@ Files (abstract disks)

@ Network endpoints (abstract NIC)

@ Windows (abstract screens)

@ ..

Think of them as objects with state and methods

Issues in OS Design

Structure: how is the OS organized?

Concurrency: how are parallel activities created and
controlled?

Sharing: how are resources shared?
Naming: how are resources named by users?

Protection: how are distrusting parties protected from
each other?

Security: how to authenticate, authorize, and ensure
privacy?

Performance: how to make it fast?

More issues in OS Design

e © @ @ O o

Reliability: how do we deal with failures??
Portability: how to write once, run anywhere?
Extensibility: how do we add new features?
Communication: how do we exchange information?
Scale: what happens as demands increase?

Persistence: how do we make information outlast the
processes that created it?

Accounting: who pays the bill and how do we control
resource usage?

A Short History of
Operating Systems

("\\\\"Qg_ = ;__é//:?"/!//’:.‘\

HISTORY OF
OPERATING SYSTEMS

® Phase 1: Hardware 1s expensive, humans are cheap
® User at console: single-user systems
® Batching systems

® Multi-programming systems

HAND PROGRAMMED
MACHINES (1945-1955)

4 | -

® Single user systems

® OS = loader + libraries of
common subroutines

® Problem: low utilization of
expensive components

time device busy

= % utilization

observation interval

BATCH PROCESSING
(1955-1965)

Operating system = loader + sequencer / — 2\
+ output processor m |

User Data

User Program

Output

“System Software”

Operating System

Input

Card
Reader

Compute

\—» Tape

Printer

\

MULTIPROGRAMMING
(1965-1980)

Keep several jobs in memory and multiplex GPU between jobs

User Program n

Read (var)

User Program 2

User Program 1 //' system call Read()
% begin
StartIO(input device)
WaitIO(interrupt)
EndIO(input device)

“System Software”

Operating System :
AN end Read

MULTIPROGRAMMING

(1965-1980)

Keep several jobs in memory and multiplex GPU between jobs

User Program n

User Program 2

User Program 1

“System Software”

Operating System

Program 1 OS I/0 Device
main{
read({
k: read () >
startIO() i e ———— |
waitIO() —
endio() .
= interrupt
(Gl

MULTIPROGRAMMING
(1965-1980)

Keep several jobs in memory and multiplex GPU between jobs

User Program n

User Program 2

User Program 1

“System Software”

Operating System

Program 1 OS Program 2 | 1/0 Device
main{
read({
k: read () >
startIO() . waman g i e ——— |
schedule () — Main{ ———
endio{ —_—
< interrupt
= schedule ()
: }

HISTORY OF
OPERATING SYSTEMS

® Phase 1: Hardware is expensive, humans are cheap
s User at console: single-user systems
s Batching systems

s Multi-programming systems

¢ Phase 2: Hardware is cheap, humans are expensive

® Time sharing: Users use cheap terminals and share servers

TIMESHARING (1970-)

A timer interrupt 18 used to multiplex GPU between jobs

User Program n

User Program 2

User Program 1

“System Software”

Operating System

Program 1 OS Program 2
main{ _
timer
. interrupt , Schedule() {
» main{
}
timer,, ee——
schedule() {M
S
——— e y
——— interrupt

» schedule(){

HISTORY OF
OPERATING SYSTEMS

® Phase 1: Hardware is expensive, humans are cheap
s User at console: single-user systems
s Batching systems

s Multi-programming systems

¢ Phase 2: Hardware is cheap, humans are expensive

s Time sharing: Users use cheap terminals and share servers

e Phase 3: Hardware is very cheap, humans are very expensive
® Personal computing: One system per user
® Distributed computing: many systems per user

s Ubiquitous computing: LOT'S of systems per users

OPERATING SYSTEMS FOR
PCs

Personal computing systems

O Single user

O Unlization no longer a concern

O Emphasis on user interface and API

0 Many services & features not present

Evolution

O Initially: OS as a simple service
provider (simple libraries)

0 Now: Multi-application systems with
support for coordination

DISTRIBUTED
OPERATING SYSTEMS

© Abstraction: a multi-processor system as a single processor one.

© New challenges in consistency, reliability, resource management,
performance, etc.

o Examples: SANs, Oracle Parallel Server

User User
Program Program

OS OS

OS
file system

name services
mail services

process process management
management memory management

Network

UBIQUITOUS COMPUTING

o Challenges
0 Small memory size

O Slow processor

O Battery concerns
O Scale

O Security

0 Naming

Genealogy of modern
Opera’ring SV CEINE

P
~
~
~
~
~
~
~
~
L3S
~,

MSDOS (70s) VMS (70s) VM370 (705) UNIX”(7OIS)

L e

Windows (805) BSD UNIX (805) Mach (805)

5 [
N 1
' 1
1 1
' 1
' 1
! [
1
1
[
1
1
1
1
1 Feeid
[.’ Sea
B . 1 Sea
:”,' AT i SV
‘4'| o v B ORI ot T s S e e i
a 1 BN
'
1
]
1
S NEXT Mac OS
[
'

Windows £ e LINUX
Mobile Windows NT (90s) ':, Free BSD (90-today) \ /

/ Mac OSX

Windows 8 VMWare Android iOS/

