The 12 Commandments of Synchronization

Emin Glin Sirer
Computer Science Department, Cornell University

October 4, 2011

Abstract

In the beginning, there was hardware. Now the hardware was forratess
empty, darkness was over the surface of silicon.

And then the creator said “let there be operating systems,” and theeed@ss.
The creator saw that OSes were good.

And the creator said “let there be processes, and threads.” OSesegearning
with processes and threads carrying out different tasks. Thenehéocrsaid “let
the processes and threads synchronize with each other.” For thishaskeator
appointed human-kind. But humans were fallible, and weak, and tiley fa get
synchronization correct, and fallen angel BSOD (pronourisedod), spawn of
Beelzebub, ruled the day with great evil.

So the creator sent the following commandments.

Commandment 0. Thou shalt live and die by coding conventions for synchroniza-
tion.

Remember the parable of Jebediah the Electrician, who wipekiis house using
only pink wires. He said onto the townsfolks “I saved a buriilenot buying properly
color-coded wires; and yet my lights turn on when | flippeté switch. My wiring is
correct and just right for my needs, and | did not have to wairgut blue wires and
green wires and brown wires. | use the book of Good Wiring @atiens as TP in my
outhouse, for | have no use for any rules.” And the townsfalkisl “be careful with
your hubris, for the creator might smite thee.” And he resjadh, “I rule over you with
my cheap wiring and you are all weaklings for following wkitown good practices.”
Remember when his wife was with child, and he wanted to builéddition to his
outhouse? He made a mistake when tracing the all-pink wiréseaway back to the
power plant, cut into a live wire with his metal clippers, amds promptly fried in a
flash of hellfire. Take heed of the story of ex-Jebediah thetEtéan, now known as
Jebediah the Crisp.

For that is the fate that awaits you when you do not follow emrtions when writing
synchronization code. There will be times, tempting tinelsen the problem seems
constrained enough to solve with a custom solution thaatésl the conventions you
have been taught. We sent these to you to test your free wibelfr-control, and BSOD
lurks behind them. If you give in to the temptation, you witine up with a solution
that may be correct just by the skin of its teeth, but will ikeot be understandable to
others in the field. It may be just right, or it may have subtigdy but in either case,

it will take a lot of time to figure out whether it is correct. Rember that your goal
is not to barely meet the minimum correctness criteria—wategtyou in our image
to strive for higher standards. Your goal is to meet the @bness criteria with code
that is clear, obviously correct, self-documenting, anéhtaénable. So for that reason,
always follow the commandments, even when not doing so doeisnmediately lead
to problems that you yourself can observe. For at a minimwua,ngake it difficult for
the grader angels to track your sins and good deeds!

And surely, the grader angels have better things to do thgrdee your code
correct or incorrect. Just as they do not spend their tinberling to every utterance by
every crazy person to see if there is any grain of truth inrtm@inologues, they cannot
be expected to find the nugget of goodness in a sea of jumbiedhgynization code.
They need to see clear, crisp, obviously correct code. Thg @non you to not just
write correct code, but to demonstrate to others easilyithsitcorrect. And we have
given you these commandments, and the dragon book, andglegrental reading list,
and the miniprojects, and the lectures, so you may do so.

Commandment 1. Thou shalt name your synchronization variables properly.

We gave you all names, and so should you to all your variabdexl the name
of each object should describe that which the object does. &wnangst you would
name your kid “Kid"? Or “KidA? Or “MyKid"? Or “k"? Every kid is plainly a
kid, and someone’s kid. A global naméack or myl ock or nut ex or sena or
| is an abomination. For a big program will have countless wmagefor different
pieces of functionality, so you shall, nay, must, documenatexactly that particular
mutex is trying to achieve. For we watch over your code, andcare see the line
sema = Semaphore() so we know thasenn is, indeed, a Semaphore without
your helpful(!) naming.

The name has to describe the function the variable servass ifsed to provide
mutually exclusive access to a resource R, cdR.itut ex. If it's a semaphore used
to count the number of free slots in a bounded buffer, cdilrieesl ots. If it's
a condition variable where the barber waits for customersnter, you may call it
cust oner spr esent , so when you write code likeust onmer spresent . wai t (),
the code is self-documenting. If it's used to ensure muuettlusive access to an ob-
ject, and it is an instance variable of that object, then, @mg then, may you call it
| ock and refer to it asel f . | ock—it describeth that which it locks, because it is
an instance variable (and not a global). Only those who haen lzorrupted by the
great evil of BSOD would expect someone to follow synchration code where the
variable names consist of a single letter lgkeor worse, where multiple synchroniza-
tion variables have names that differ in just a few charactde senal andsena?2.
For that is surely the road to synchronization hell. All ikea is a trickster djinn or
Nanabozho to cause a typo, and BSOD shall rule.

Commandment 2. Thou shalt not violate the abstraction boundaries provided
by synchronization primitives, nor shalt thou try to change the semantics of well-
established synchronization primitives, and thou shall look with disdain upon he who
does.

Semaphores solely support an init()/P()/V() interfacehwio way to broadcast() or
notifyAll(), and permit no way to read the internal count.r@dion variables provide
wait()/signal() and broadcast(), but they have no intestete, and they provide no way
to tell if there are sleeping threads on the condition vagialbhere is no way to tell if
a monitor lock is currently being held without entering thenitor.

There are dangerous lands where basic synchronizatioritipamprovide addi-
tional interfaces. For instance, the tongue of Python algau to check if a lock is
held without acquiring it. Such extended interfaces arentbik of BSOD, for they are
worse than crack cocaine. They are tempting to use, butikély lead to the curses
of busy-waiting or incorrect synchronization.

As for people who invent their own new synchronization madé$ras that are nei-
ther semaphores nor monitors with condition variables alRée parable of John Doe
the Microsoft Programmer who implemented the process suspeunts in Windows.
These counts count down, but not up, so they're half-senraplamd half-condition-
variable. In the Land of Windows, if you do a suspend() folkalby another suspend()
on a thread, you must perform two resume() operations toerethe thread runnable.
But if you perform two resume() operations on a running tridlowed by a single
suspend(), your thread will be suspended. And if you perfovonresume()s followed
by two suspend()s, then you still have to perform two morames()’s to get the thread
runnable again, even though, often, you have no idea whenrggume() operations
are scheduled to execute. There is no way to convey the ambpain that this asym-
metry has caused, except to say that there is a lesser-krtbviev@l of hell in Dante’s
Inferno reserved, solely, for John Doe and his ilk.

Do not invent your own synchronization mechanisms, for yleallsonly come up
with unnatural abominations of the kind used in Windowsenekling the half-man,
half-bear and half-pig we materialized to strike terror @ople’s hearts. The existing
primitives are universal and sufficient. Master them and gball need additional
features in your synchronization mechanisms about as maigbwaneed a second tail.
“Wait,” you might say, “I don’t even have a first tail.” Thatgecisely the point.

Commandment 3. Thou shalt use monitors and condition variables instead of
semaphores whenever possible.

Synchronization bugs started the day Lady Ada, the first narogner, traveled
through time and bit into the apple offered by Edsger Digsivhich contained Semaphores.
Semaphores, as powerful and useful as they are, are toofobfeefallible humankind—
recall the parable of Gollum, who was originally an IBM 36@grammer. You should
be sufficiently conversant in semaphores, so you can spdhk tost tribes who speak
in that tongue. You might find yourself in semaphore-onlytimes, where you have
no choice but to write semaphore code.

But we gave you monitors and condition variables so you dohaoe to wor-
ship the ancient gods of semaphores! You know that monitwiscandition variables

are designed to make the code self-documenting. You knotattilest make explicit
the condition for which a thread is waiting, without havirggread through the total-
ity of the code, as would be the case if semaphores were usaa know that they
separate the mutual exclusion functionality of binary seioges from the wait/signal
functionality provided by counting semaphores into masitand condition variables,
respectively. Given all these advantages, you should a\default to a solution based
on monitors and condition variables.

The tongue of Python is the closest one to the original visidthe creator. There,
you define a monitor with condition variables thus:

class BoundedBuffer:
def __init__(self, maxsize):
self.lock = Lock()
self.maxsize = maxsize
self.items = Queue()
self.itemspresent = Condition(self.lock)
self.freespace = Condition(self.lock)

def produce(self, item):
with self.lock:
while len(self.items) == self.maxsize:
self.freespace . wait ()
self.items.append(item)
self.itemspresent. notify ()

def consume(self):
with self.lock:
while len(self.items) ==
self.itemspresent. wait ()
self.freespace.notify ()
return self.items.pop()

Note how the condition variables are all wrapped around #meesmonitor lock.
This is what ties the entire monitor together, as this is hbe dystem figures out
which monitor lock to release when the thread blocks on a itiondvariable. It is
incidentally the same monitor lock you should be holdinghattime you invoke oper-
ations on condition variables. If you omit that part, andateecondition variables thus
Condi ti on(), the condition variables shall have a brand new Lock() m=staasso-
ciated with them, and you shall have to acquire that padrciack in addition to the
monitor lock. The creator looks down on such behavior, noaibse it is inefficient, but
because it is confusing, and all good hackers should stay fraia confusing code.

Note also theni t h statements that acquire and release the monitor lock op entr
and exit to the monitor-related procedures. Note also thexketis only one lock per
monitor. BSOD might lure you with promises of even greateratorency and tempt
you into using more than one lock per monitor. Do not give ar,the number of the
beast, when it comes to monitor locks, is every number gréagés one.

Commandment 4. Thou shalt not mix semaphores and condition variables.

You belong to the creator’s chosen tribe of hackers who céte worrect synchro-
nization code. While you need to understand semaphores soayotiaverse the land
of the infidels who use them, you shall not adopt their cust@mmix and match their
customs with ours. Such inter-species couplings are ogrthound for hellfire.

Commandment 5. Thou shalt not busy-wait.

You are reading this note because you want to figure out howedlocking syn-
chronization primitives properly. So you must understareneed to avoid spinning.
Be careful of BSOD and his ways of getting you to spin even giogou’re ostensibly
using blocking primitives. You might find yourself in a whiteop, constantly grabbing
a lock, checking a predicate, and if the predicate does ndt helinquishing the lock
and going back to the beginning of the loop—this is a busyingiibop even though
there is a lock or semaphore involved. A loose indicator chdvad code is when you
find yourself wanting to put a sleep() or yield() statementia loop to “give another
thread a chance to run.” Another loose indicator of a busig4i&avhen your laptop is
too hot to hold in your lap. A better indicator is to ask the sfian, for each thread,
under what conditions that thread will ever block and willthken off the run queue.
You must have a concise, hon-empty answer to this question.

Commandment 6. All shared state must be protected.

Thou shalt protect all data that may be accessed by more tietheead. A simple
way to check proper protection is to ask the question, foh@aciable or each object
allocated on the heap, what is the set of locks (monitors maghores) that are held
at the time that piece of memory is touched. This is known asLtbck-Set check.
Compute the Lock-Set of each variable X at every point whei® liead or written.
Take the intersection of all Lock-Sets. The result must be-@mpty, or else BSOD
will smite your program at a time when you expect it least. Alwh't forget that
both reads and writes must happen under the same lock s#s;ceanot be performed
without a lock, or else they may observe an inconsisterg stat

Do not get complacent because updates to integers are atoniwst architec-
tures! The creator does not guarantee atomicity of multjgerations on multiple
integer fields, of operations on data structures such aseguend trees and hashtables,
or on some architectures, of accesses to plain old intef¢@@mssome high-performance
multiprocessors, even though writes to integer variablesatomic on any given pro-
cessor, these writes are not visible to other processoessitthe processors perform a
“memory barrier,” a special instruction that flushes thecpssor’s write buffers. On
these machines, you must judiciously issue memory baiigiere and after touching
shared state. Locks are the simplest way to ensure that @mtememory barriers
are issued on these architectures).

If any variable is accessed without the corresponding Itekreader of your code
will immediately conclude that you're an unknowning dideipf the infidel BSOD,
unless you also include a large comment that explains, iat gietail, why you'vehad
to violate this commandment. Also, if you have had to violats tommandment,
you have to shout “unclean” as you roam the countryside, kerstknow that your

wretched code is diseased, and shall treat it carefully.

Commandment 7. Thou shalt grab the monitor lock upon entry to, and release it
upon exit from, a procedure.

While BSOD and his ilk will try to convince you to hold locks fas short a time as
possible, do not ever forget that your primary allegiande isorrectness. If you grab
and release the monitor lock more than once in your prograenonitored state can
change in between, which creates the opportunity for bugsetep in. Therefore, you
must grab the monitor lock on entry, immediately, and make $oi release it on all
return paths, but only at the very end.

The right way to do this in the tongue of Python is to usesthe h statement as the
first line in every procedure that is part of the monitor. Imalaghesynchr oni zed
keyword on a method ensures that the monitor lock is acqainedreleased automat-
ically, but thou shall stay away from its sinner cousin, thenchr oni zed-block
within a method, for he shall lead you astray.

Commandment 8. Honor thy shared data with an invariant, which your code may
assume holdswhen a lock is successfully acquired and your code must make true before
the lock isreleased.

Remember that you created your monitor to protect some disdiage from con-
flicting updates. That state shall have placed upon it arriem& Honor this invariant,
so that the days of operation of your program are long. Thereaif the invariant is
specific to the problem at hand. Invariants may include thaadyof properties with
which the creator has blessed programs, such as the condzspee between values in
counters and various entities in the world, correspondart&een state variables and
the history of past accesses to the shared state, and stasgmeetaining to the size or
structure of any data structures. Typically, the particing@ariant for your shared state
will be tightly coupled to or derived from the safety (and lpeps liveness) properties
of the problem you are trying to solve. For instance, in tharaed buffer exam-
ple of which the creator spoketh, the invariant is that theuguholds between 0 and
nmaxsi ze items.

Enunciate the invariant, so you might uphold it upon mondggation. Ideally,
write it down in the monitor creation code, so those who felia your footsteps will
know to uphold it. Having enunciated an invariant, and maale & holds upon monitor
creation, you may assume that it holds on any entry to thetmorissumptions are the
reward that you receive for following this commandment,tfey allow you to make
progress on writing code: where would we be if we could notemadsumptions about
the state of our variables? But you must pay for the privilefymaking assumptions
about shared state with a corresponding obligation, forctieator both giveth and
taketh. And your obligation is to ensure that the same iavdyiwhich the creator
allowed you to freely assume upon entry to your monitor, ibalg at the time the
monitor lock is released. Thus, honor the invariant, antdallshonor you.

Commandment 9. Thou shalt cover thy naked waits.
Condition variables are not semaphores for a reason. Thageuis supposed to

convey the precise condition for which the thread is waitMthereas for semaphores,
figuring out this condition requires analyzing the rest ofiyprogram, condition vari-
ables properly used can make this condition apparent ty egader. This requires a
pattern where the wait is preceded by a predicate. You mwstyal have such a pred-
icate. Is it possible to sometimes get away without such dipage and just issue a
“self.cv.wait()” without checking any state? Maybe, buta# the fable of Jebediah
the Crisp, who cut corners. So, in this course and also latéfe, you must always
precede every wait on a condition variable with an appré@igaeck for the condition
on which that thread is blocked.

And don't try to appease this commandment by adding a goatsiipredicate! If
you replacesel f . cv. wai t () with

with self.lock:
a=False
while not a:
self.cv.wait()
a=True

your wait is just as naked as before. The creator sees thralligluch superficial
makeup on thy nakedness. The predicate must refer to vesidiit are shared with,
and modified by, other threads.

Commandment 10. Thou shalt guard your wait predicates in a while loop. Thou
shalt never guard a wait statement with an if statement.

When the creator first imagined the universe, he thought ofrédwehere a signal
immediately passed the monitor lock from the signaler todig@alee. This design
was ok, and was called Hoare semantics, but it had the pyogbert it interfered with
scheduling.

Then some brilliant practitioners from the tribe of Mesa kizalidea to not imme-
diately schedule the signalee and hand over the monitordbttke time of the signal.
In the tribe of Mesa, the signalee simply gets placed on thejueue, with no guaran-
tees on when it will grab the monitor lock. It may have been eokp because there
is an item to consume, but then some other thread may haveedritee monitor and
consumed the item before our original thread got a chancesttuée. Therefore, upon
every wakeup, the predicate for waiting needs to be recliecke

To do this, you must use the idiom

with self.lock:
while not wakeup-condition
self.cv.wait()

Note the while loop and the predicate, and how every wakeup frait is imme-
diately followed by re-checking of the condition.

Commandment 11. Thou shalt not split predicates.
Sometimes, you might find yourself wanting to sleep on twoasse condition
variables, depending on a conditional check. If you find gelirhaving to wait for

two predicates to become true, you must check both of therheasame time. By
the same time, we mean while holding the same monitor locikanduhe same epoch.
Assume that a thread grabs a monitor lock, checks a predicataits (by releasing
the monitor lock) until A is true, wakes up, checks A and findsue, checks B, and
waits (by releasing the monitor lock) until B is true. When itdily wakes up and
re-checks B, it can at most be assured that B holds. A may Hamged to be false
while the monitor lock was released, waiting for B to turnetrso the following code
shippets are very muafot equivalent.
This is the path of the righteous one:

with self.lock:
while not self.condA or not self.condB:
if not condA:
self.condAcv.wait()
if not condB:
self.condBcv.wait ()
here, both condA and condB hold

Note that on wakeup from either the first or second conditimth conditions are re-
checked, as they should be.
And this is the path of the infidel, leading to the depths of: hel

with self.lock:
while not self.condA:
self.condAcv.wait ()
while not self.condB:
self.condBcv.wait ()
here, condA does not necessarily hold

Commandment 12. Thou shalt help make the world a better place for the creator’s
mighty synchronization vision.

There are many systems, and great systems yet to come, thiatgosynchroniza-
tion primitives. And while the creator sent many prophetgteach to humankind,
some wicked practitioners paid no heed and did not followwosd. For instance,
some languages provide at most one condition variable paitanoC++ provides no
special language support for monitors and condition véggtonly runtime libraries.
Some languages lack synchronization support altogethay. the creator have mercy
on their souls.

Once you have mastered the basic primitives, you have dolifg-obligation to
help those who have not. Do guide your brother and sisteranogiers educated else-
where through the valley of their limited synchronizatioRI& to a modern future that
lives up to the creator’s vision, for you are their keepery Ra attention to follow-
ers of BSOD who preach that synchronization is too difficaitrhortals; they peddle
their event-programming frameworks, which are slow andkwamly at small scales.
Such frameworks lack the power, concurrency and flexibilftthe multi-programming
model with which the creator has blessed you. You do not neegtene else’s frame-

work to grab a single, global lock for you. Show that you'rgable of handling
concurrency, and the creator shall further bless you withectly working code.

Once you've mastered these basics, you are destined foreHgathere you will
meet the creator, get 52 processor cores all to yourselfgahtb break every com-
mandment herein for eternity. There is an exciting researed, involving non-blocking
(lock-free) synchronization primitives, where a seledugr of people who have mas-
tered the teachings in these commandments play an evenrfuigifermance game,
and none of these commandments are used at all. But getting tequires a mind-
merge with the creator, which starts by following these c@ndments religiously.

May you live long, build complex yet correct software, andyroar breed of hack-
ers who can write correct synchronization code prosper.

Bibliography
Inspiration for this document came from these holy texts phaceded it:
1. Mike Dahlin. Basic Threads Programming: Standards arate®fy. Department

of Computer Sciences, University of Texas at Austin, TecpdReTR-08-07,
2008

2. Butler W. Lampson and David D. Redell. Experience withcesses and moni-
tors in Mesa. Communications of the ACM, 23(2):105-117,d.98

3. Fred B. Schneider. On Concurrent Programming. SpriNgdeg, New York,
New York, 1997.

4. Andrew Birrel. An introduction to programming with thidsa Research Report
35, Digital Equipment Corporation Systems Research Ceh@&0.

5. C. A. R. Hoare. Monitors: an operating system structudagcept. Communi-
cations of the ACM, 17(10):54957, 1974.

6. Edsger W. Dijkstra. Cooperating sequential processéa)H23). E.W. Dijk-
stra Archive. Center for American History, The UniversitiyT@xas at Austin,
September 1965.

