
The 12 Commandments of Synchronization

Emin Gün Sirer
Computer Science Department, Cornell University

October 4, 2011

Abstract

In the beginning, there was hardware. Now the hardware was formlessand
empty, darkness was over the surface of silicon.

And then the creator said “let there be operating systems,” and there were OSes.
The creator saw that OSes were good.

And the creator said “let there be processes, and threads.” OSes were teeming
with processes and threads carrying out different tasks. Then the creator said “let
the processes and threads synchronize with each other.” For this task,the creator
appointed human-kind. But humans were fallible, and weak, and they failed to get
synchronization correct, and fallen angel BSOD (pronouncedbeesod), spawn of
Beelzebub, ruled the day with great evil.

So the creator sent the following commandments.

Commandment 0. Thou shalt live and die by coding conventions for synchroniza-
tion.

Remember the parable of Jebediah the Electrician, who wiredup his house using
only pink wires. He said onto the townsfolks “I saved a bundleby not buying properly
color-coded wires; and yet my lights turn on when I flippeth the switch. My wiring is
correct and just right for my needs, and I did not have to worryabout blue wires and
green wires and brown wires. I use the book of Good Wiring Conventions as TP in my
outhouse, for I have no use for any rules.” And the townsfolkssaid “be careful with
your hubris, for the creator might smite thee.” And he respondeth, “I rule over you with
my cheap wiring and you are all weaklings for following well-known good practices.”
Remember when his wife was with child, and he wanted to build an addition to his
outhouse? He made a mistake when tracing the all-pink wires all the way back to the
power plant, cut into a live wire with his metal clippers, andwas promptly fried in a
flash of hellfire. Take heed of the story of ex-Jebediah the Electrician, now known as
Jebediah the Crisp.

For that is the fate that awaits you when you do not follow conventions when writing
synchronization code. There will be times, tempting times,when the problem seems
constrained enough to solve with a custom solution that violates the conventions you
have been taught. We sent these to you to test your free will and self-control, and BSOD
lurks behind them. If you give in to the temptation, you will come up with a solution
that may be correct just by the skin of its teeth, but will likely not be understandable to
others in the field. It may be just right, or it may have subtle bugs, but in either case,

1

it will take a lot of time to figure out whether it is correct. Remember that your goal
is not to barely meet the minimum correctness criteria—we created you in our image
to strive for higher standards. Your goal is to meet the correctness criteria with code
that is clear, obviously correct, self-documenting, and maintainable. So for that reason,
always follow the commandments, even when not doing so does not immediately lead
to problems that you yourself can observe. For at a minimum, you make it difficult for
the grader angels to track your sins and good deeds!

And surely, the grader angels have better things to do than toprove your code
correct or incorrect. Just as they do not spend their time listening to every utterance by
every crazy person to see if there is any grain of truth in their monologues, they cannot
be expected to find the nugget of goodness in a sea of jumbled synchronization code.
They need to see clear, crisp, obviously correct code. The onus is on you to not just
write correct code, but to demonstrate to others easily thatit is correct. And we have
given you these commandments, and the dragon book, and the suplemental reading list,
and the miniprojects, and the lectures, so you may do so.

Commandment 1. Thou shalt name your synchronization variables properly.
We gave you all names, and so should you to all your variables.And the name

of each object should describe that which the object does. Whoamongst you would
name your kid “Kid”? Or “KidA”? Or “MyKid”? Or “k”? Every kid is plainly a
kid, and someone’s kid. A global namedlock or mylock or mutex or sema or
l is an abomination. For a big program will have countless mutexes for different
pieces of functionality, so you shall, nay, must, document what exactly that particular
mutex is trying to achieve. For we watch over your code, and wecan see the line
sema = Semaphore() so we know thatsema is, indeed, a Semaphore without
your helpful(!) naming.

The name has to describe the function the variable serves. Ifit’s used to provide
mutually exclusive access to a resource R, call itR mutex. If it’s a semaphore used
to count the number of free slots in a bounded buffer, call itfreeslots. If it’s
a condition variable where the barber waits for customers toenter, you may call it
customerspresent, so when you write code likecustomerspresent.wait(),
the code is self-documenting. If it’s used to ensure mutually exclusive access to an ob-
ject, and it is an instance variable of that object, then, andonly then, may you call it
lock and refer to it asself.lock—it describeth that which it locks, because it is
an instance variable (and not a global). Only those who have been corrupted by the
great evil of BSOD would expect someone to follow synchronization code where the
variable names consist of a single letter likes, or worse, where multiple synchroniza-
tion variables have names that differ in just a few characters, likesema1 andsema2.
For that is surely the road to synchronization hell. All it takes is a trickster djinn or
Nanabozho to cause a typo, and BSOD shall rule.

2

Commandment 2. Thou shalt not violate the abstraction boundaries provided
by synchronization primitives, nor shalt thou try to change the semantics of well-
established synchronization primitives, and thou shall look with disdain upon he who
does.

Semaphores solely support an init()/P()/V() interface, with no way to broadcast() or
notifyAll(), and permit no way to read the internal count. Condition variables provide
wait()/signal() and broadcast(), but they have no internalstate, and they provide no way
to tell if there are sleeping threads on the condition variable. There is no way to tell if
a monitor lock is currently being held without entering the monitor.

There are dangerous lands where basic synchronization primitives provide addi-
tional interfaces. For instance, the tongue of Python allows you to check if a lock is
held without acquiring it. Such extended interfaces are thework of BSOD, for they are
worse than crack cocaine. They are tempting to use, but will likely lead to the curses
of busy-waiting or incorrect synchronization.

As for people who invent their own new synchronization mechanisms that are nei-
ther semaphores nor monitors with condition variables. Recall the parable of John Doe
the Microsoft Programmer who implemented the process suspend counts in Windows.
These counts count down, but not up, so they’re half-semaphore, and half-condition-
variable. In the Land of Windows, if you do a suspend() followed by another suspend()
on a thread, you must perform two resume() operations to render the thread runnable.
But if you perform two resume() operations on a running thread followed by a single
suspend(), your thread will be suspended. And if you performtwo resume()s followed
by two suspend()s, then you still have to perform two more resume()’s to get the thread
runnable again, even though, often, you have no idea when your resume() operations
are scheduled to execute. There is no way to convey the amountof pain that this asym-
metry has caused, except to say that there is a lesser-known 8th level of hell in Dante’s
Inferno reserved, solely, for John Doe and his ilk.

Do not invent your own synchronization mechanisms, for you shall only come up
with unnatural abominations of the kind used in Windows, resembling the half-man,
half-bear and half-pig we materialized to strike terror in people’s hearts. The existing
primitives are universal and sufficient. Master them and youshall need additional
features in your synchronization mechanisms about as much as you need a second tail.
“Wait,” you might say, “I don’t even have a first tail.” That isprecisely the point.

Commandment 3. Thou shalt use monitors and condition variables instead of
semaphores whenever possible.

Synchronization bugs started the day Lady Ada, the first programmer, traveled
through time and bit into the apple offered by Edsger Dijkstra, which contained Semaphores.
Semaphores, as powerful and useful as they are, are too powerful for fallible humankind—
recall the parable of Gollum, who was originally an IBM 360 programmer. You should
be sufficiently conversant in semaphores, so you can speak tothe lost tribes who speak
in that tongue. You might find yourself in semaphore-only runtimes, where you have
no choice but to write semaphore code.

But we gave you monitors and condition variables so you do nothave to wor-
ship the ancient gods of semaphores! You know that monitors and condition variables

3

are designed to make the code self-documenting. You know that they make explicit
the condition for which a thread is waiting, without having to read through the total-
ity of the code, as would be the case if semaphores were used. You know that they
separate the mutual exclusion functionality of binary semaphores from the wait/signal
functionality provided by counting semaphores into monitors and condition variables,
respectively. Given all these advantages, you should always default to a solution based
on monitors and condition variables.

The tongue of Python is the closest one to the original visionof the creator. There,
you define a monitor with condition variables thus:

c l a s s BoundedBuf fer :
de f i n i t (s e l f , maxs ize) :

s e l f . l ock = Lock ()
s e l f . maxs ize = maxs ize
s e l f . i t em s = Queue ()
s e l f . i t e m s p r e s e n t = C o n d i t i o n (s e l f . l ock)
s e l f . f r e e s p a c e = C o n d i t i o n (s e l f . l ock)

de f p roduce (s e l f , i t em) :
w i th s e l f . l ock :

wh i l e l e n (s e l f . i t em s) == s e l f . maxs ize :
s e l f . f r e e s p a c e . wa i t ()

s e l f . i t em s . append (i tem)
s e l f . i t e m s p r e s e n t . n o t i f y ()

de f consume (s e l f) :
w i th s e l f . l ock :

wh i l e l e n (s e l f . i t em s) == 0 :
s e l f . i t e m s p r e s e n t . wa i t ()

s e l f . f r e e s p a c e . n o t i f y ()
r e t u r n s e l f . i t em s . pop ()

Note how the condition variables are all wrapped around the same monitor lock.
This is what ties the entire monitor together, as this is how the system figures out
which monitor lock to release when the thread blocks on a condition variable. It is
incidentally the same monitor lock you should be holding at the time you invoke oper-
ations on condition variables. If you omit that part, and create condition variables thus
Condition(), the condition variables shall have a brand new Lock() instance asso-
ciated with them, and you shall have to acquire that particular lock in addition to the
monitor lock. The creator looks down on such behavior, not because it is inefficient, but
because it is confusing, and all good hackers should stay away from confusing code.

Note also thewith statements that acquire and release the monitor lock on entry
and exit to the monitor-related procedures. Note also that there is only one lock per
monitor. BSOD might lure you with promises of even greater concurrency and tempt
you into using more than one lock per monitor. Do not give in, for the number of the
beast, when it comes to monitor locks, is every number greater than one.

4

Commandment 4. Thou shalt not mix semaphores and condition variables.
You belong to the creator’s chosen tribe of hackers who can write correct synchro-

nization code. While you need to understand semaphores so youcan traverse the land
of the infidels who use them, you shall not adopt their customs, or mix and match their
customs with ours. Such inter-species couplings are certainly bound for hellfire.

Commandment 5. Thou shalt not busy-wait.
You are reading this note because you want to figure out how to use blocking syn-

chronization primitives properly. So you must understand the need to avoid spinning.
Be careful of BSOD and his ways of getting you to spin even though you’re ostensibly
using blocking primitives. You might find yourself in a whileloop, constantly grabbing
a lock, checking a predicate, and if the predicate does not hold, relinquishing the lock
and going back to the beginning of the loop—this is a busy-waiting loop even though
there is a lock or semaphore involved. A loose indicator of such bad code is when you
find yourself wanting to put a sleep() or yield() statement inthe loop to “give another
thread a chance to run.” Another loose indicator of a busy-wait is when your laptop is
too hot to hold in your lap. A better indicator is to ask the question, for each thread,
under what conditions that thread will ever block and will betaken off the run queue.
You must have a concise, non-empty answer to this question.

Commandment 6. All shared state must be protected.
Thou shalt protect all data that may be accessed by more than one thread. A simple

way to check proper protection is to ask the question, for each variable or each object
allocated on the heap, what is the set of locks (monitors or semaphores) that are held
at the time that piece of memory is touched. This is known as the Lock-Set check.
Compute the Lock-Set of each variable X at every point where it is read or written.
Take the intersection of all Lock-Sets. The result must be non-empty, or else BSOD
will smite your program at a time when you expect it least. Anddon’t forget that
both reads and writes must happen under the same lock set; reads cannot be performed
without a lock, or else they may observe an inconsistent state.

Do not get complacent because updates to integers are atomicon most architec-
tures! The creator does not guarantee atomicity of multipleoperations on multiple
integer fields, of operations on data structures such as queues and trees and hashtables,
or on some architectures, of accesses to plain old integers.(On some high-performance
multiprocessors, even though writes to integer variables are atomic on any given pro-
cessor, these writes are not visible to other processors unless the processors perform a
“memory barrier,” a special instruction that flushes the processor’s write buffers. On
these machines, you must judiciously issue memory barriersbefore and after touching
shared state. Locks are the simplest way to ensure that appropriate memory barriers
are issued on these architectures).

If any variable is accessed without the corresponding lock,the reader of your code
will immediately conclude that you’re an unknowning disciple of the infidel BSOD,
unless you also include a large comment that explains, in great detail, why you’vehad
to violate this commandment. Also, if you have had to violate this commandment,
you have to shout “unclean” as you roam the countryside, so others know that your

5

wretched code is diseased, and shall treat it carefully.

Commandment 7. Thou shalt grab the monitor lock upon entry to, and release it
upon exit from, a procedure.

While BSOD and his ilk will try to convince you to hold locks foras short a time as
possible, do not ever forget that your primary allegiance isto correctness. If you grab
and release the monitor lock more than once in your program, the monitored state can
change in between, which creates the opportunity for bugs tocreep in. Therefore, you
must grab the monitor lock on entry, immediately, and make sure to release it on all
return paths, but only at the very end.

The right way to do this in the tongue of Python is to use thewith statement as the
first line in every procedure that is part of the monitor. In Java, thesynchronized
keyword on a method ensures that the monitor lock is acquiredand released automat-
ically, but thou shall stay away from its sinner cousin, thesynchronized-block
within a method, for he shall lead you astray.

Commandment 8. Honor thy shared data with an invariant, which your code may
assume holds when a lock is successfully acquired and your code must make true before
the lock is released.

Remember that you created your monitor to protect some shared state from con-
flicting updates. That state shall have placed upon it an invariant. Honor this invariant,
so that the days of operation of your program are long. The nature of the invariant is
specific to the problem at hand. Invariants may include the myriad of properties with
which the creator has blessed programs, such as the correspondance between values in
counters and various entities in the world, correspondancebetween state variables and
the history of past accesses to the shared state, and statements pertaining to the size or
structure of any data structures. Typically, the particular invariant for your shared state
will be tightly coupled to or derived from the safety (and perhaps liveness) properties
of the problem you are trying to solve. For instance, in the bounded buffer exam-
ple of which the creator spoketh, the invariant is that the queue holds between 0 and
maxsize items.

Enunciate the invariant, so you might uphold it upon monitorcreation. Ideally,
write it down in the monitor creation code, so those who follow in your footsteps will
know to uphold it. Having enunciated an invariant, and made sure it holds upon monitor
creation, you may assume that it holds on any entry to the monitor. Assumptions are the
reward that you receive for following this commandment, forthey allow you to make
progress on writing code: where would we be if we could not make assumptions about
the state of our variables? But you must pay for the privilegeof making assumptions
about shared state with a corresponding obligation, for thecreator both giveth and
taketh. And your obligation is to ensure that the same invariant, which the creator
allowed you to freely assume upon entry to your monitor, is upheld at the time the
monitor lock is released. Thus, honor the invariant, and it shall honor you.

Commandment 9. Thou shalt cover thy naked waits.
Condition variables are not semaphores for a reason. Their usage is supposed to

6

convey the precise condition for which the thread is waiting. Whereas for semaphores,
figuring out this condition requires analyzing the rest of your program, condition vari-
ables properly used can make this condition apparent to every reader. This requires a
pattern where the wait is preceded by a predicate. You must always have such a pred-
icate. Is it possible to sometimes get away without such a predicate and just issue a
“self.cv.wait()” without checking any state? Maybe, but recall the fable of Jebediah
the Crisp, who cut corners. So, in this course and also later in life, you must always
precede every wait on a condition variable with an appropriate check for the condition
on which that thread is blocked.

And don’t try to appease this commandment by adding a gratuitous predicate! If
you replaceself.cv.wait() with

w i th s e l f . l ock :
a= F a l s e
wh i l e no t a :

s e l f . cv . wa i t ()
a=True

your wait is just as naked as before. The creator sees throughall such superficial
makeup on thy nakedness. The predicate must refer to variables that are shared with,
and modified by, other threads.

Commandment 10. Thou shalt guard your wait predicates in a while loop. Thou
shalt never guard a wait statement with an if statement.

When the creator first imagined the universe, he thought of a world where a signal
immediately passed the monitor lock from the signaler to thesignalee. This design
was ok, and was called Hoare semantics, but it had the property that it interfered with
scheduling.

Then some brilliant practitioners from the tribe of Mesa hadthe idea to not imme-
diately schedule the signalee and hand over the monitor lockat the time of the signal.
In the tribe of Mesa, the signalee simply gets placed on the run queue, with no guaran-
tees on when it will grab the monitor lock. It may have been woken up because there
is an item to consume, but then some other thread may have entered the monitor and
consumed the item before our original thread got a chance to execute. Therefore, upon
every wakeup, the predicate for waiting needs to be rechecked.

To do this, you must use the idiom

wi th s e l f . l ock :
wh i l e no t wakeup−c o n d i t i o n

s e l f . cv . wa i t ()

Note the while loop and the predicate, and how every wakeup from wait is imme-
diately followed by re-checking of the condition.

Commandment 11. Thou shalt not split predicates.
Sometimes, you might find yourself wanting to sleep on two separate condition

variables, depending on a conditional check. If you find yourself having to wait for

7

two predicates to become true, you must check both of them at the same time. By
the same time, we mean while holding the same monitor lock during the same epoch.
Assume that a thread grabs a monitor lock, checks a predicateA, waits (by releasing
the monitor lock) until A is true, wakes up, checks A and finds it true, checks B, and
waits (by releasing the monitor lock) until B is true. When it finally wakes up and
re-checks B, it can at most be assured that B holds. A may have changed to be false
while the monitor lock was released, waiting for B to turn true. So the following code
snippets are very muchnot equivalent.

This is the path of the righteous one:

w i th s e l f . l ock :
wh i l e no t s e l f . condA or no t s e l f . condB :

i f no t condA :
s e l f . condA cv . wa i t ()

i f no t condB :
s e l f . condB cv . wa i t ()

here , bo th condA and condB ho ld

Note that on wakeup from either the first or second condition,both conditions are re-
checked, as they should be.

And this is the path of the infidel, leading to the depths of hell:

w i th s e l f . l ock :
wh i l e no t s e l f . condA :

s e l f . condA cv . wa i t ()
wh i l e no t s e l f . condB :

s e l f . condB cv . wa i t ()
here , condA does no t n e c e s s a r i l y ho ld

Commandment 12. Thou shalt help make the world a better place for the creator’s
mighty synchronization vision.

There are many systems, and great systems yet to come, that provide synchroniza-
tion primitives. And while the creator sent many prophets topreach to humankind,
some wicked practitioners paid no heed and did not follow hisword. For instance,
some languages provide at most one condition variable per monitor. C++ provides no
special language support for monitors and condition variables, only runtime libraries.
Some languages lack synchronization support altogether. May the creator have mercy
on their souls.

Once you have mastered the basic primitives, you have a life-long obligation to
help those who have not. Do guide your brother and sister programmers educated else-
where through the valley of their limited synchronization APIs to a modern future that
lives up to the creator’s vision, for you are their keeper. Pay no attention to follow-
ers of BSOD who preach that synchronization is too difficult for mortals; they peddle
their event-programming frameworks, which are slow and work only at small scales.
Such frameworks lack the power, concurrency and flexibilityof the multi-programming
model with which the creator has blessed you. You do not need someone else’s frame-

8

work to grab a single, global lock for you. Show that you’re capable of handling
concurrency, and the creator shall further bless you with correctly working code.

Once you’ve mastered these basics, you are destined for Heaven, where you will
meet the creator, get 52 processor cores all to yourself, andget to break every com-
mandment herein for eternity. There is an exciting researcharea, involving non-blocking
(lock-free) synchronization primitives, where a select group of people who have mas-
tered the teachings in these commandments play an even higher-performance game,
and none of these commandments are used at all. But getting there requires a mind-
merge with the creator, which starts by following these commandments religiously.

May you live long, build complex yet correct software, and may our breed of hack-
ers who can write correct synchronization code prosper.

Bibliography
Inspiration for this document came from these holy texts that preceded it:

1. Mike Dahlin. Basic Threads Programming: Standards and Strategy. Department
of Computer Sciences, University of Texas at Austin, Tech Report TR-08-07,
2008

2. Butler W. Lampson and David D. Redell. Experience with processes and moni-
tors in Mesa. Communications of the ACM, 23(2):105-117, 1980.

3. Fred B. Schneider. On Concurrent Programming. Springer-Verlag, New York,
New York, 1997.

4. Andrew Birrel. An introduction to programming with threads. Research Report
35, Digital Equipment Corporation Systems Research Center, 1989.

5. C. A. R. Hoare. Monitors: an operating system structuringconcept. Communi-
cations of the ACM, 17(10):54957, 1974.

6. Edsger W. Dijkstra. Cooperating sequential processes (EWD-123). E.W. Dijk-
stra Archive. Center for American History, The University of Texas at Austin,
September 1965.

9

