
Processes
and

Threads
Prof. Sirer
CS 4410

Cornell University

What is a program?

A program is a file containing executable code (machine
instructions) and data (information manipulated by these
instructions) that together describe a computation

Resides on disk

Obtained through compilation and linking

Preparing a Program

Source
files

compiler/
assembler

Object
files

Linker

PROGRAM
An executable file

in a standard format,
such as ELF on Linux,

Microsoft PE on Windows

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

static
libraries

(libc)

Running a program

Every OS provides a “loader” that is capable of converting
a given program into an executing instance, a process

A program in execution is called a process

The loader:
reads and interprets the executable file

Allocates memory for the new process and sets process’s memory
to contain code & data from executable

pushes “argc”, “argv”, “envp” on the stack

sets the CPU registers properly & jumps to the entry point

Process != Program

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Code

Initialized data

BSS

Heap

Stack

DLL’s

mapped segments

Executable

Process
address space

Program is passive
• Code + data

Process is running program
• stack, regs, program counter

Example:
We both run IE:
- Same program
- Separate processes

6

Process Management
Process management deals with several
issues:

what are the units of execution
how are those units of execution represented
in the OS
how is work scheduled in the CPU
what are possible execution states, and how
does the system move from one to another

7

The Process

A process is the basic unit of execution

it’s the unit of scheduling

it’s the dynamic (active) execution context (as opposed to a
program, which is static)

A process is sometimes called a job or a task or a
sequential process.
A sequential process is a program in execution; it defines
the sequential, instruction-at-a-time execution of a
program.

8

What’s in a Process?

A process consists of at least:
the code for the running program

the data for the running program

an execution stack tracing the state of procedure calls made

the Program Counter, indicating the next instruction

a set of general-purpose registers with current values

a set of operating system resources (open files, connections to
other programs, etc.)

The process contains all the state for a program in
execution.

9

Process State

There may be several processes running the same
program (e.g. multiple web browsers), but each is a
distinct process with its own representation.

Each process has an execution state that indicates what it
is currently doing, e.g.,:

ready: waiting to be assigned to the CPU

running: executing instructions on the CPU

waiting: waiting for an event, e.g., I/O completion

As a program executes, it moves from state to state

Process State Transitions

New

Ready

Exit

clock interrupt
descheduling

dispatch

Processes hop across states as a result of:

• Actions they perform, e.g. system calls

• Actions performed by OS, e.g. rescheduling

• External actions, e.g. I/O

Running

Waiting

11

Process Data Structures

At any time, there are many processes in the system,
each in its particular state.

The OS must have data structures representing each
process: this data structure is called the PCB:

Process Control Block

The PCB contains all of the info about a process.

The PCB is where the OS keeps all of a process’ hardware
execution state (PC, SP, registers) when the process is not
running.

12

PCB

The PCB contains the
entire state of the
process

PCB

Process state

Process number

Program counter

Stack pointer

General-purpose registers

Memory management info

Username of owner

Scheduling information

Accounting info

13

Time Multiplexing
(PCBs and Hardware State)

When a process is running its Program Counter, stack
pointer, registers, etc., are loaded on the CPU (I.e., the
processor hardware registers contain the current values)

When the OS stops running a process, it saves the current
values of those registers into the PCB for that process.

When the OS is ready to start executing a new process, it
loads the hardware registers from the values stored in
that process’ PCB.

The process of switching the CPU from one process to
another is called a context switch. Timesharing systems
may do 1000s of context switches a second!

Context Switch

For a running process
All registers are loaded in CPU and modified

E.g. Program Counter, Stack Pointer, General Purpose Registers

When process relinquishes the CPU, the OS
Saves register values to the PCB of that process

To execute another process, the OS
Loads register values from PCB of that process

Context Switch
− Process of switching CPU from one process to another

− Very machine dependent for types of registers

Details of Context Switching

Very tricky to implement
OS must save state without changing state

Should run without touching any registers
CISC: single instruction saves all state

RISC: reserve registers for kernel
Or way to save a register and then continue

Overheads: CPU is idle during a context switch
Explicit:

direct cost of loading/storing registers to/from main memory

Implicit:
Opportunity cost of flushing useful caches (cache, TLB, etc.)

Wait for pipeline to drain in pipelined processors

16

State Queues

The OS maintains a collection of queues that represent
the state of all processes in the system

There is typically one queue for each state, e.g., ready,
waiting for I/O, etc.

Each PCB is queued onto a state queue according to its
current state.

As a process changes state, its PCB is unlinked from one queue and
linked onto another.

17

State Queues

Ready Queue Header

Wait Queue Header

head ptr
tail ptr

head ptr
tail ptr

PCB BPCB A PCB C

PCB X PCB M

There may be many wait queues, one for each
type of wait (specific device, timer, message,…).

18

PCBs and State Queues

PCBs are data structures, dynamically allocated in OS
memory.

When a process is created, a PCB is allocated to it,
initialized, and placed on the correct queue.

As the process computes, its PCB moves from queue to
queue.

When the process is terminated, its PCB is deallocated.

Processes Under UNIX

Fork() system call to create a new process

int fork() does many things at once:
creates a new address space (called the child)

copies the parent’s address space into the child’s

starts a new thread of control in the child’s address space

parent and child are equivalent -- almost
in parent, fork() returns a non-zero integer

in child, fork() returns a zero.

difference allows parent and child to distinguish

int fork() returns TWICE!

Example

main(int argc, char **argv)

{

char *myName = argv[1];

int cpid = fork();

if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());

exit(0);

} else {

printf(“My child is %d\n”, cpid);

exit(0);

}

} What does this program print?

Bizarre But Real

lace:tmp<15> cc a.c

lace:tmp<16> ./a.out foobar

The child of foobar is 23874

My child is 23874

Parent

Child

Operating
System

fork()

retsys

v0=0v0=23874

Exec()

Fork() gets us a new address space,
but parent and child share EVERYTHING

memory, operating system state

int exec(char *programName) completes the picture
throws away the contents of the calling address space
replaces it with the program named by programName
starts executing at header.startPC
Does not return

Pros: Clean, simple
Con: duplicate operations

Process Termination

Process executes last statement and calls exit syscall
Process’ resources are deallocated by operating system

Parent may terminate execution of child process (kill)
Child has exceeded allocated resources

Task assigned to child is no longer required

If parent is exiting
Some OSes don’t allow child to continue if parent terminates

All children terminated - cascading termination

In either case, resources named in the PCB are
freed, and PCB is deallocated

24

Processes and Threads
A full process includes numerous things:

an address space (defining all the code and data pages)

OS resources and accounting information

a “thread of control”, which defines where the process is
currently executing (basically, the PC and registers)

Creating a new process is costly, because of all of
the structures (e.g., page tables) that must be
allocated
Communicating between processes is costly,
because most communication goes through the
OS

25

Parallel Programs

Suppose I want to build a parallel program to execute on a
multiprocessor, or a web server to handle multiple
simultaneous web requests. I need to:

create several processes that can execute in parallel

cause each to map to the same address space (because they’re
part of the same computation)

give each its starting address and initial parameters

the OS will then schedule these processes, in parallel, on the
various processors

Notice that there’s a lot of cost in creating these processes
and possibly coordinating them. There’s also a lot of
duplication, because they all share the same address space,
protection, etc……

26

“Lightweight” Processes

What’s shared between these processes?
They all share the same code and data (address space)

they all share the same privileges

they share almost everything in the process

What don’t they share?
Each has its own PC, registers, and stack pointer

Idea: why don’t we separate the idea of process (address
space, accounting, etc.) from that of the minimal “thread of
control” (PC, SP, registers)?

27

Threads and Processes

Modern operating systems therefore support two entities:
the process, which defines the address space and general
process attributes

the thread, which defines a sequential execution stream within a
process

A thread is bound to a single process. For each process,
however, there may be many threads.

Threads are the unit of scheduling; processes are containers
in which threads execute.

28

Processes and Address Spaces

What happens when Apache wants to
run multiple concurrent computations ?

Emacs Mail

Kernel

User

0x80000000

0xffffffff

Apache
0x00000000

0x7fffffff

0x00000000

0x7fffffff

0x00000000

0x7fffffff

29

Processes and Address Spaces

Two heavyweight address spaces for two
concurrent computations ?

Emacs Mail User

0x80000000

0xffffffff

Apache
0x00000000

0x7fffffff

0x00000000

0x7fffffff

0x00000000

0x7fffffff

Apache

Kernel

30

Processes and Address Spaces

We can eliminate duplicate address
spaces and place concurrent
computations in the same address space

Emacs Mail User

0x80000000

0xffffffff

Apache
0x00000000

0x7fffffff

0x00000000

0x7fffffff

0x00000000

0x7fffffff

Apache

Kernel

Threads

Lighter weight than processes

Threads need to be mutually trusting
Why?

Ideal for programs that want to support
concurrent computations where lots of code and
data are shared between computations

Servers, GUI code, …

32

How different OSes support
threads

example: MS/DOS example: Unix

example: Xerox Pilot example: Windows, OSX, Linux

: address space

: thread

33

Separation of Threads and
Processes

Separating threads and processes makes it easier to support
multi-threaded applications

Concurrency (multi-threading) is useful for:
improving program structure

handling concurrent events (e.g., web requests)

building parallel programs

So, multi-threading is useful even on a uniprocessor

To be useful, thread operations have to be fast

34

Kernel Threads

Kernel threads still suffer from performance
problems

Operations on kernel threads are slow because:
a thread operation still requires a kernel call
kernel threads may be overly general, in order to
support needs of different users, languages, etc.
the kernel doesn’t trust the user, so there must be lots
of checking on kernel calls

35

User-Level Threads

To make threads really fast, they should be implemented
at the user level

A user-level thread is managed entirely by the run-time
system (user-level code that is linked with your program).

Each thread is represented simply by a PC, registers,
stack and a little control block, managed in the user’s
address space.

Creating a new thread, switching between threads, and
synchronizing between threads can all be done without
kernel involvement

	Processes�and�Threads
	What is a program?
	Preparing a Program
	Running a program
	Process != Program
	Process Management
	The Process
	What’s in a Process?
	Process State
	Process State Transitions
	Process Data Structures
	PCB
	Time Multiplexing�(PCBs and Hardware State)
	Context Switch
	Details of Context Switching
	State Queues
	State Queues
	PCBs and State Queues
	Processes Under UNIX
	Example
	Bizarre But Real
	Exec()
	Process Termination
	Processes and Threads
	Parallel Programs
	“Lightweight” Processes
	Threads and Processes
	Processes and Address Spaces
	Processes and Address Spaces
	Processes and Address Spaces
	Threads
	How different OSes support threads
	Separation of Threads and Processes
	Kernel Threads
	User-Level Threads

