
Architectural Support
for

Operating Systems

Prof. Sirer
CS 4410

Cornell University

Basic Computer Organization

CPU Memory

?

Keyboard

Let’s build a keyboard
Lots of mechanical
switches
Need to convert to a
compact form (binary)

We’ll use a special
mechanical switch that,
when pressed, connects
two wires
simultaneously

Keyboard

When a key
is pressed, a
7-bit key
identifier is
computed

+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)
not all 16 wires are shown

Keyboard

A latch can store the keystroke
indefinitely

+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)
not all 16 wires are shown

La
tc

h

Keyboard

The keyboard can then appear to the CPU
as if it is a special memory address

+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)
not all 16 wires are shown

La
tc

h

CPU

Device Interfacing Techniques

Memory-mapped I/O
Device communication goes over the memory bus
Reads/Writes to special addresses are converted into I/O
operations by dedicated device hardware
Each device appears as if it is part of the memory address space

Programmed I/O
CPU has dedicated, special instructions
CPU has additional input/output wires (I/O bus)
Instruction specifies device and operation

Memory-mapped I/O is the predominant device
interfacing technique in use

Polling vs. Interrupts

In our design, the CPU constantly needs to read the
keyboard latch memory location to see if a key is pressed

Called polling

Inefficient

An alternative is to add extra circuitry so the keyboard can
alert the CPU when there is a keypress

Called interrupt driven I/O

Interrupt driven I/O enables the CPU and devices to
perform tasks concurrently, increasing throughput

Only needs a tiny bit of circuitry and a few extra wires to
implement the “alert” operation

Interrupt Driven I/O

CPU

Memory

An interrupt controller mediates between
competing devices

Raises an interrupt flag to get the CPU’s attention
Identifies the interrupting device

Can disable (aka mask) interrupts if the CPU so
desires

intr
dev id

Interrupt
Controller

Interrupt Driven I/O

CPU

Memory

An interrupt controller mediates between
competing devices

Raises an interrupt flag to get the CPU’s attention
Identifies the interrupting device

Can disable (aka mask) interrupts if the CPU so
desires

intr

Interrupt Management

Interrupt controllers manage interrupts
Maskable interrupts: can be turned off by the CPU for
critical processing
Nonmaskable interrupts: signifies serious errors (e.g.
unrecoverable memory error, power out warning, etc)

Interrupts contain a descriptor of the interrupting
device

A priority selector circuit examines all interrupting
devices, reports highest level to the CPU

Interrupt controller implements interrupt priorities
Can optionally remap priority levels

Interrupt-driven I/O summary

Normal interrupt-driven operation with memory-mapped
I/O proceeds as follows

CPU initiates a device operation (e.g. read from disk) by writing
an operation descriptor to a device register

CPU continues its regular computation

The device asynchronously performs the operation

When the operation is complete, interrupts the CPU

This would incur high-overhead for moving bulk-data
One interrupt per byte!

Direct Memory Access (DMA)

Transfer data directly between device and memory
No CPU intervention required for moving bits

Device raises interrupts solely when the block transfer is
complete

Critical for high-performance devices

Recap

We now have a basic computer system to
which devices can be connected

How do we execute applications on this
system?

Applications are not necessarily trusted!

Privilege Levels

Some processor functionality cannot be made
accessible to untrusted user applications

e.g. HALT, change MMU settings, set clock, reset
devices, manipulate device settings, …

Need to have a designated mediator between
untrusted/untrusting applications

The operating system (OS)

Need to delineate between untrusted applications
and OS code

Use a “privilege mode” bit in the processor
0 = Untrusted = user, 1 = Trusted = OS

Privilege Mode

Privilege mode bit indicates if the current
program can perform privileged operations

On system startup, privilege mode is set to 1, and the
processor jumps to a well-known address
The operating system (OS) boot code resides at this
address
The OS sets up the devices, initializes the MMU, loads
applications, and resets the privilege bit before
invoking the application

Applications must transfer control back to OS for
privileged operations

Sample System Calls

Print character to screen
Needs to multiplex the shared screen resource
between multiple applications

Send a packet on the network
Needs to manipulate the internals of a device
whose hardware interface is unsafe

Allocate a page
Needs to update page tables & MMU

System Calls

A system call is a controlled transfer of execution
from unprivileged code to the OS

A potential alternative is to make OS code read-only,
and allow applications to just jump to the desired
system call routine. Why is this a bad idea?

A SYSCALL instruction transfers control to a
system call handler at a fixed address

SYSCALL instruction

SYSCALL instruction does an atomic jump to a controlled location
Switches the sp to the kernel stack
Saves the old (user) SP value
Saves the old (user) PC value (= return address)
Saves the old privilege mode
Sets the new privilege mode to 1
Sets the new PC to the kernel syscall handler

Kernel system call handler carries out the desired system call
Saves callee-save registers
Examines the syscall number
Checks arguments for sanity
Performs operation
Stores result in v0
Restores callee-save registers
Performs a “return from syscall” instruction, which restores the privilege mode, SP and PC

Libraries and Wrappers

Compilers do not emit SYSCALL instructions
They do not know the interface exposed by the OS

Instead, applications are compiled with standard libraries,
which provide “syscall wrappers”

printf() -> write(); malloc() -> sbrk(); recv(); open(); close(); …

Wrappers are:
written in assembler,
internally issue a SYSCALL instruction,
pass arguments to kernel,
pass result back to calling application

Typical Process Layout

Libraries provide the
glue between user
processes and the OS

libc linked in with all C
programs
Provides printf, malloc,
and a whole slew of
other routines necessary
for programs

OBJECT1
OBJECT2

Stack

Heap

Data

Text

HELLO WORLD
GO BIG RED CS!

printf(char * fmt, …) {
create the string to be printed
SYSCALL 80

}
malloc() { … }
strcmp() { … }

main() {
printf (“HELLO WORLD”);
printf(“GO BIG RED CS”);

!
Program

Library

Activation Records

Full System Layout

The OS is omnipresent and
steps in where necessary
to aid application execution

Typically resides in high
memory

When an application needs
to perform a privileged
operation, it needs to
invoke the OS

OBJECT1
OBJECT2

Stack

Heap
DataHELLO WORLD

GO BIG RED CS!printf(char * fmt, …) {

main() { … }

Program

Library

Activation Records

USER OBJECT1
OBJECT2

OS Stack

OS Heap
OS DataLINUX

syscall_entry_point() { … }

OS Text

Kernel Activation Records

Exceptional Situations

System calls are control transfers to the OS, performed under the control of
the user application

Sometimes, need to transfer control to the OS at a time when the user
program least expects it

Division by zero,
Alert from the power supply that electricity is about to go out,
Alert from the network device that a packet just arrived,
Clock notifying the processor that the clock just ticked,

Some of these causes for interruption of execution have nothing to do with
the user application

Need a (slightly) different mechanism, that allows resuming the user
application

Interrupts & Exceptions

On an interrupt or exception
Switches the sp to the kernel stack
Saves the old (user) SP value
Saves the old (user) PC value
Saves the old privilege mode
Saves cause of the interrupt/exception
Sets the new privilege mode to 1
Sets the new PC to the kernel interrupt/exception handler

Kernel interrupt/exception handler handles the event
Saves all registers
Examines the cause
Performs operation required
Restores all registers
Performs a “return from interrupt” instruction, which restores the privilege mode,
SP and PC

Syscall vs. Interrupt

The differences lie in how they are initiated, and
how much state needs to be saved and restored

Syscall requires much less state saving
Caller-save registers are already saved by the
application

Interrupts typically require saving and restoring
the full state of the processor

Because the application got struck by a lightning bolt
without anticipating the control transfer

Terminology

Trap
Any kind of a control transfer to the OS

Syscall
Synchronous, program-initiated control transfer from user to the
OS to obtain service from the OS
e.g. SYSCALL

Exception
Asynchronous, program-initiated control transfer from user to the
OS in response to an exceptional event
e.g. Divide by zero, segmentation fault

Interrupt
Asynchronous, device-initiated control transfer from user to the
OS
e.g. Clock tick, network packet

Memory Protection

Some memory addresses need protection
The OS text, data, heap and stack need to be protected from
untrusted applications

Some devices should be out of reach of applications

Memory Management Unit (MMU) aids with memory
management

Provides a virtual to physical address translation

Examines every load/store/jump and ensures that applications
remain within bounds using protection (RWX) bits associated with
every page of memory

Modern architectures use a Translation Lookaside Buffer
(TLB) for keeping track of virtual to physical mappings

Software is invoked on a miss

TLB Operation

TLB examines every virtual address uttered
by the CPU, and if there is a match, and
the permissions are appropriate, replaces
the virtual page number with the physical
page number

CPU

M
em

or
y

TLB
Vaddr Paddr RWX

Atomic Instructions

Hardware needs to provide special
instructions to enable concurrent programs
to operate correctly

	Architectural Support�for �Operating Systems
	Basic Computer Organization
	Keyboard
	Keyboard
	Keyboard
	Keyboard
	Device Interfacing Techniques
	Polling vs. Interrupts
	Interrupt Driven I/O
	Interrupt Driven I/O
	Interrupt Management
	Interrupt-driven I/O summary
	Direct Memory Access (DMA)
	Recap
	Privilege Levels
	Privilege Mode
	Sample System Calls
	System Calls
	SYSCALL instruction
	Libraries and Wrappers
	Typical Process Layout
	Full System Layout
	Exceptional Situations
	Interrupts & Exceptions
	Syscall vs. Interrupt
	Terminology
	Memory Protection
	TLB Operation
	Atomic Instructions

