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Basic Computer Organization
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Keyboard

Let’s build a keyboard
Lots of mechanical 
switches
Need to convert to a 
compact form (binary)

We’ll use a special 
mechanical switch that, 
when pressed, connects 
two wires 
simultaneously



Keyboard

When a key 
is pressed, a 
7-bit key 
identifier is 
computed

+

3-bit
encoder
(4 to 3)

4-bit
encoder
(16 to 4)
not all 16 wires are shown



Keyboard

A latch can store the keystroke 
indefinitely 
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Keyboard

The keyboard can then appear to the CPU 
as if it is a special memory address
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encoder
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encoder
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Device Interfacing Techniques

Memory-mapped I/O
Device communication goes over the memory bus
Reads/Writes to special addresses are converted into I/O 
operations by dedicated device hardware
Each device appears as if it is part of the memory address space

Programmed I/O
CPU has dedicated, special instructions
CPU has additional input/output wires (I/O bus)
Instruction specifies device and operation

Memory-mapped I/O is the predominant device 
interfacing technique in use



Polling vs. Interrupts

In our design, the CPU constantly needs to read the 
keyboard latch memory location to see if a key is pressed

Called polling

Inefficient

An alternative is to add extra circuitry so the keyboard can 
alert the CPU when there is a keypress

Called interrupt driven I/O

Interrupt driven I/O enables the CPU and devices to 
perform tasks concurrently, increasing throughput

Only needs a tiny bit of circuitry and a few extra wires to 
implement the “alert” operation



Interrupt Driven I/O

CPU

Memory

An interrupt controller mediates between 
competing devices

Raises an interrupt flag to get the CPU’s attention
Identifies the interrupting device

Can disable (aka mask) interrupts if the CPU so 
desires

intr
dev id

Interrupt
Controller



Interrupt Driven I/O

CPU

Memory

An interrupt controller mediates between 
competing devices

Raises an interrupt flag to get the CPU’s attention
Identifies the interrupting device

Can disable (aka mask) interrupts if the CPU so 
desires

intr



Interrupt Management

Interrupt controllers manage interrupts
Maskable interrupts: can be turned off by the CPU for 
critical processing
Nonmaskable interrupts: signifies serious errors (e.g. 
unrecoverable memory error, power out warning, etc)

Interrupts contain a descriptor of the interrupting 
device

A priority selector circuit examines all interrupting 
devices, reports highest level to the CPU

Interrupt controller implements interrupt priorities
Can optionally remap priority levels



Interrupt-driven I/O summary

Normal interrupt-driven operation with memory-mapped 
I/O proceeds as follows

CPU initiates a device operation (e.g. read from disk) by writing 
an operation descriptor to a device register

CPU continues its regular computation

The device asynchronously performs the operation

When the operation is complete, interrupts the CPU

This would incur high-overhead for moving bulk-data
One interrupt per byte!



Direct Memory Access (DMA)

Transfer data directly between device and memory
No CPU intervention required for moving bits

Device raises interrupts solely when the block transfer is 
complete

Critical for high-performance devices



Recap

We now have a basic computer system to 
which devices can be connected

How do we execute applications on this 
system?

Applications are not necessarily trusted!



Privilege Levels

Some processor functionality cannot be made 
accessible to untrusted user applications

e.g. HALT, change MMU settings, set clock, reset 
devices, manipulate device settings, …

Need to have a designated mediator between 
untrusted/untrusting applications

The operating system (OS)

Need to delineate between untrusted applications 
and OS code

Use a “privilege mode” bit in the processor
0 = Untrusted = user, 1 = Trusted = OS



Privilege Mode

Privilege mode bit indicates if the current 
program can perform privileged operations

On system startup, privilege mode is set to 1, and the 
processor jumps to a well-known address
The operating system (OS) boot code resides at this 
address
The OS sets up the devices, initializes the MMU, loads 
applications, and resets the privilege bit before 
invoking the application

Applications must transfer control back to OS for 
privileged operations



Sample System Calls

Print character to screen
Needs to multiplex the shared screen resource 
between multiple applications

Send a packet on the network
Needs to manipulate the internals of a device 
whose hardware interface is unsafe

Allocate a page
Needs to update page tables & MMU



System Calls

A system call is a controlled transfer of execution 
from unprivileged code to the OS

A potential alternative is to make OS code read-only, 
and allow applications to just jump to the desired 
system call routine. Why is this a bad idea?

A SYSCALL instruction transfers control to a 
system call handler at a fixed address



SYSCALL instruction

SYSCALL instruction does an atomic jump to a controlled location
Switches the sp to the kernel stack
Saves the old (user) SP value
Saves the old (user) PC value (= return address)
Saves the old privilege mode
Sets the new privilege mode to 1
Sets the new PC to the kernel syscall handler

Kernel system call handler carries out the desired system call
Saves callee-save registers
Examines the syscall number
Checks arguments for sanity
Performs operation
Stores result in v0
Restores callee-save registers
Performs a “return from syscall” instruction, which restores the privilege mode, SP and PC



Libraries and Wrappers

Compilers do not emit SYSCALL instructions
They do not know the interface exposed by the OS

Instead, applications are compiled with standard libraries, 
which provide “syscall wrappers”

printf() -> write(); malloc() -> sbrk(); recv(); open(); close(); …

Wrappers are:
written in assembler, 
internally issue a SYSCALL instruction, 
pass arguments to kernel, 
pass result back to calling application



Typical Process Layout

Libraries provide the 
glue between user 
processes and the OS

libc linked in with all C 
programs
Provides printf, malloc, 
and a whole slew of 
other routines necessary 
for programs

OBJECT1
OBJECT2

Stack

Heap

Data

Text

HELLO WORLD
GO BIG RED CS!

printf(char * fmt, …) {
create the string to be printed
SYSCALL 80

}
malloc() { … }
strcmp() { … }

main() {
printf (“HELLO WORLD”);
printf(“GO BIG RED CS”);

!
Program

Library

Activation Records



Full System Layout

The OS is omnipresent and 
steps in where necessary 
to aid application execution

Typically resides in high 
memory

When an application needs 
to perform a privileged 
operation, it needs to 
invoke the OS

OBJECT1
OBJECT2

Stack

Heap
DataHELLO WORLD

GO BIG RED CS!printf(char * fmt, …) {

main() { … }

Program

Library

Activation Records

USER OBJECT1
OBJECT2

OS Stack

OS Heap
OS DataLINUX

syscall_entry_point() { … }

OS Text

Kernel Activation Records



Exceptional Situations

System calls are control transfers to the OS, performed under the control of 
the user application

Sometimes, need to transfer control to the OS at a time when the user 
program least expects it

Division by zero,
Alert from the power supply that electricity is about to go out, 
Alert from the network device that a packet just arrived,
Clock notifying the processor that the clock just ticked,

Some of these causes for interruption of execution have nothing to do with 
the user application

Need a (slightly) different mechanism, that allows resuming the user 
application



Interrupts & Exceptions

On an interrupt or exception
Switches the sp to the kernel stack
Saves the old (user) SP value
Saves the old (user) PC value
Saves the old privilege mode
Saves cause of the interrupt/exception
Sets the new privilege mode to 1
Sets the new PC to the kernel interrupt/exception handler

Kernel interrupt/exception handler handles the event
Saves all registers
Examines the cause
Performs operation required
Restores all registers
Performs a “return from interrupt” instruction, which restores the privilege mode, 
SP and PC



Syscall vs. Interrupt

The differences lie in how they are initiated, and 
how much state needs to be saved and restored

Syscall requires much less state saving
Caller-save registers are already saved by the 
application

Interrupts typically require saving and restoring 
the full state of the processor

Because the application got struck by a lightning bolt 
without anticipating the control transfer



Terminology

Trap
Any kind of a control transfer to the OS

Syscall
Synchronous, program-initiated control transfer from user to the 
OS to obtain service from the OS
e.g. SYSCALL

Exception
Asynchronous, program-initiated control transfer from user to the 
OS in response to an exceptional event
e.g. Divide by zero, segmentation fault

Interrupt
Asynchronous, device-initiated control transfer from user to the 
OS
e.g. Clock tick, network packet



Memory Protection

Some memory addresses need protection
The OS text, data, heap and stack need to be protected from 
untrusted applications

Some devices should be out of reach of applications

Memory Management Unit (MMU) aids with memory 
management

Provides a virtual to physical address translation

Examines every load/store/jump and ensures that applications 
remain within bounds using protection (RWX) bits associated with 
every page of memory

Modern architectures use a Translation Lookaside Buffer 
(TLB)  for keeping track of virtual to physical mappings

Software is invoked on a miss



TLB Operation

TLB examines every virtual address uttered 
by the CPU, and if there is a match, and 
the permissions are appropriate, replaces 
the virtual page number with the physical 
page number

CPU

M
em

or
y

TLB
Vaddr Paddr RWX 



Atomic Instructions

Hardware needs to provide special 
instructions to enable concurrent programs 
to operate correctly
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