CS4410/11: Operating Systems

CPU Scheduling (Recap)

Networking

Rachit Agarwal
Anne Bracy

Slides based on material from Sirer, Rennesse, Rexford (Princeton)
CPU Scheduling — Example

Arrival Time

Job Length (e.g., \#CPU cycles)

0 1 2

10

4

8
CPU Scheduling — Example

Job Length (e.g., #CPU cycles)

Arrival Time

<table>
<thead>
<tr>
<th>Arrival Time</th>
<th>Job Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Priority methods:
- FIFO
- LIFO
- SJF
- SRTF
- RR
Networking — What is it about?

So far: focused on what happens on a “machine”!

• Networking
 • How do machines communicate?

• Lets start with a simple analogy
 • How to move stuff from München to Ithaca?
Networking — Key Concepts

Four “concepts”!

• Layering
 • Abstraction is the key to manage complexity

• Naming
 • A name for each computer, protocol, ..

• Protocols
 • Computers, network devices speaking the same language

• Resource Allocation
 • Share resources (bandwidth, wireless spectrum, paths, ...)
Networking — A Stack of Protocol Layers

Five “layers”!

• Modularity
 • Each layer relies on services from layer below
 • Each layer exports services to layer above

• Interfaces
 • Hide implementation details
 • Layers can change without disturbing other layers
Networking — A Stack of Protocol Layers

Five “layers”!

- Application
- Transport
- Network
- Link layer
- Physical layer

You
Post office
Airplane/rail
Postman
Transfer “signals”
• Transfer of bits
 • 0s and 1s
 • Not concerned with protocols
Networking — Link layer

Link = Medium + Adapters

• Communication Medium

• Network Adapters (e.g., NIC — network interface card)
Networking — Link layer

Broadcast links = Shared Medium

- Everyone listens to everybody

shared wire (e.g. Ethernet)
shared wireless (e.g. Wavelan)
satellite
cocktail party
Networking — Link layer

Broadcast links = Shared Medium

• Everyone listens to everybody

link-layer “protocol”
Networking — Link layer

Five “services”!

• Encoding data
 • Represented as a collection of 0s and 1s

• Framing
 • Put data packet into a frame; add receiver address

• Error detection and correction
 • Detect and (optionally) correct errors

• Flow control
 • When to send/receive frames
 • Depends on the protocol
Networking — Link layer

Addresses

• Unique identifiers for sources and destinations
 • “Hard-coded” in the adapter
 • MAC address (e.g., 00-15-C5-49-04-A9)
 • Hierarchical allocation
 • Blocks: assigned to vendors (e.g., Dell) from IEEE
 • Adapters: assigned by the vendor from its block

• What if I want to send to everybody?
 • Special (broadcast) address: FF-FF-FF-FF-FF-FF-FF
Networking — Link layer

Sharing a medium

• Ever been to a party?
 • Tried to have an interesting discussion?

• Collisions
Networking — Link layer

Let's try to come up with a protocol to avoid collisions!

• **Attempt 1: Time sharing**
 • Everybody gets a turn to speak

• **Goods**
 • Never have a collision

• **Problem**
 • Wasted resources
 • During my turn, I may have nothing to speak
 • When I have something to speak, I wait for my turn
Networking — Link layer

Lets try another protocol to avoid collisions

• Attempt 2: Frequency sharing
 • Each person is assigned a particular frequency
 • E.g., Divide into groups; each group talks among themselves

• Problem
 • What if I want to talk to others?
 • E.g., one person wants to announce something ...
Networking — Link layer

Attempt 3: Carrier sense, Collision detection, Random access

• Carrier Sense
 • Listen before speaking
 • …. and don’t interrupt

• Collision detection
 • Detect simultaneous speaking
 • …. and shut up!

• Random access
 • Wait for a random period of time
 • …. before trying to talk again
Networking — Link layer

Comparing the three approaches

• Time division
 • No collisions
 • Wasted resources!
 • What if token is lost?

• Frequency division
 • Efficient and fair at high load
 • Inefficient at low load!

• Random access
 • Efficient at low load, inefficient at high load (collisions)
Networking — Link layer (Ethernet)

Ethernet uses CSMA/CD

• Carrier Sense: continuously listen to the channel
 • If idle: start transmitting
 • If busy: wait until idle

• Collision Detection: listen while transmitting
 • No collision: transmission complete
 • Collision: abort transmission; send jam signal

• Random access: exponential back off
 • After collision, transmit after “waiting time”
 • After k collisions, choose “waiting time” from \{0, ..., 2^{k-1}\}
 • (Exponentially increasing waiting times)
Networking — Link layer (Ethernet)
Networking — Link layer (Ethernet)

Interesting Properties
Networking — Link layer (Ethernet)

Interesting Properties

• Distributed
Interesting Properties

• Distributed
 • No Central arbitrer
Interesting Properties

- Distributed
 - No Central arbitrer
 - Why is that good?
Networking — Link layer (Ethernet)

Interesting Properties

• Distributed
 • No Central arbitrer
 • Why is that good?

• Inexpensive
Networking — Link layer (Ethernet)

Interesting Properties

• Distributed
 • No Central arbitrer
 • Why is that good?

• Inexpensive
 • No state in the network
 • Cheap physical links
Networking — Link layer (Ethernet)

Connection-less, unreliable service

• Connection less
 • E.g., I am going to talk to you without getting permission first
 • Networking terminology: No “handshaking”

• Unreliable
 • Destination adapter does not acknowledge
 • Did you listen to what I said?
 • Adversarial behavior could bring the connections down
 • I am going to ignore the protocol
 • Untrusted data access
 • I want to listen to what others are talking