Project 5
Soumya Basu
Department of Computer Science
Cornell University
September 18, 2015
• Project 5 is due on November 18
• Will be implementing a Link State routing protocol
The Five Parts

- Connecting two nodes
- Dijkstra’s algorithm
- Flooding
- Link State Routing
- (Optional) Application!
Part 0

• Read the skeleton code

• You will need to interact with most of it
• Need to read up on the socket API calls

• Important functions:
 • socket, fcntl, setsockopt, bind
 • Use man pages to see the options

• Not many lines of code

• Format: C<IPaddr:port>
Dijkstra's Algorithm
Dijkstra’s Algorithm
Dijkstra's Algorithm
Dijkstra’s Algorithm

Because 6 < 8
Dijkstra’s Algorithm
Dijkstra’s Algorithm

Because $6 < 4 + 7$
Dijkstra’s Algorithm
Because $4 < 5 + 2$
Dijkstra’s Algorithm
Flooding

- How do you figure out the link state?
- Broadcast!
- You only have point-to-point though…
- Gossip protocol
 - G<srcIP:srcPort>/counter/payload\n
 - Payload will change
Flooding

- Naive implementation:
 - When you hear a message, tell EVERYONE!
Flooding

- Broadcast storms are not good…

- We make two optimizations:
 - Don’t tell the person that sent you the message
 - Don’t spread around messages you’ve seen already
Flooding
Flooding
Flooding
Flooding

• Can we do even better?
 • Yes, but this is good enough!

• What to flood?
 • Your connection state every time it changes
 • A new connection, a dead connection, etc.
 • Gossip payload: “;<addr1:port1>;<addr2:port2>…”
Link State Routing

• You have most of the pieces already!

• When you see a message, send it along the Dijkstra tree

• Most of the work here is the send message implementation

• Send format: S<dstIP:dstPort>/TTL/payload\n
• Make sure to decrement TTL
Optional Applications

• Mapping IP addresses to names (DNS)

• Anything else you want!