
Disks and RAID

50 Years Old!

• 13th September 1956

• The IBM RAMAC 350

• 80000 times more data on the 8GB 1-inch
drive in his right hand than on the 24-inch
RAMAC one in his left…

What does the disk look like?

Some parameters

• 2-30 heads (platters * 2)

– diameter 14’’ to 2.5’’

• 700-20480 tracks per surface

• 16-1600 sectors per track

• sector size:

– 64-8k bytes

– 512 for most PCs

– note: inter-sector gaps

• capacity: 20M-100G

• main adjectives: BIG, slow

Disk overheads
• To read from disk, we must specify:

– cylinder #, surface #, sector #, transfer size, memory address

• Transfer time includes:

– Seek time: to get to the track

– Latency time: to get to the sector and

– Transfer time: get bits off the disk

Track

Sector

Seek Time

Rotation

Delay

Modern disks

Barracuda

180

Cheetah X15 36LP

Capacity 181GB 36.7GB

Disk/Heads 12/24 4/8

Cylinders 24,247 18,479

Sectors/track ~609 ~485

Speed 7200RPM 15000RPM

Latency (ms) 4.17 2.0

Avg seek (ms) 7.4/8.2 3.6/4.2

Track-2-

track(ms)

0.8/1.1 0.3/0.4

Disks vs. Memory

• Smallest write: sector

• Atomic write = sector

• Random access: 5ms

– not on a good curve

• Sequential access: 200MB/s

• Cost $.002MB

• Crash: doesn’t matter (“non-

volatile”)

• (usually) bytes

• byte, word

• 50 ns

– faster all the time

• 200-1000MB/s

• $.10MB

• contents gone (“volatile”)

Disk Structure

• Disk drives addressed as 1-dim arrays of logical blocks

– the logical block is the smallest unit of transfer

• This array mapped sequentially onto disk sectors

– Address 0 is 1st sector of 1st track of the outermost cylinder

– Addresses incremented within track, then within tracks of the

cylinder, then across cylinders, from innermost to outermost

• Translation is theoretically possible, but usually difficult

– Some sectors might be defective

– Number of sectors per track is not a constant

Non-uniform #sectors / track
• Reduce bit density per track for outer layers (Constant

Linear Velocity, typically HDDs)

• Have more sectors per track on the outer layers, and

increase rotational speed when reading from outer tracks

(Constant Angular Velcity, typically CDs, DVDs)

Disk Scheduling

• The operating system tries to use hardware efficiently

– for disk drives  having fast access time, disk bandwidth

• Access time has two major components

– Seek time is time to move the heads to the cylinder containing the

desired sector

– Rotational latency is additional time waiting to rotate the desired

sector to the disk head.

• Minimize seek time

• Seek time  seek distance

• Disk bandwidth is total number of bytes transferred, divided by

the total time between the first request for service and the

completion of the last transfer.

Disk Scheduling (Cont.)

• Several scheduling algos exist service disk I/O

requests.

• We illustrate them with a request queue (0-199).

 98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

FCFS
Illustration shows total head movement of 640 cylinders.

SSTF

• Selects request with minimum seek time from current

head position

• SSTF scheduling is a form of SJF scheduling

– may cause starvation of some requests.

• Illustration shows total head movement of 236

cylinders.

SSTF (Cont.)

SCAN

• The disk arm starts at one end of the disk,

– moves toward the other end, servicing requests

– head movement is reversed when it gets to the other end of

disk

– servicing continues.

• Sometimes called the elevator algorithm.

• Illustration shows total head movement of 208

cylinders.

SCAN (Cont.)

C-SCAN

• Provides a more uniform wait time than SCAN.

• The head moves from one end of the disk to the

other.

– servicing requests as it goes.

– When it reaches the other end it immediately returns to

beginning of the disk

• No requests serviced on the return trip.

• Treats the cylinders as a circular list

– that wraps around from the last cylinder to the first one.

C-SCAN (Cont.)

C-LOOK

• Version of C-SCAN

• Arm only goes as far as last request in each

direction,

– then reverses direction immediately,

– without first going all the way to the end of the disk.

C-LOOK (Cont.)

Selecting a Good Algorithm

• SSTF is common and has a natural appeal

• SCAN and C-SCAN perform better under heavy load

• Performance depends on number and types of requests

• Requests for disk service can be influenced by the file-allocation

method.

• Disk-scheduling algorithm should be a separate OS module

– allowing it to be replaced with a different algorithm if necessary.

• Either SSTF or LOOK is a reasonable default algorithm

Disk Formatting
• After manufacturing disk has no information

– Is stack of platters coated with magnetizable metal oxide

• Before use, each platter receives low-level format

– Format has series of concentric tracks

– Each track contains some sectors

– There is a short gap between sectors

• Preamble allows h/w to recognize start of sector

– Also contains cylinder and sector numbers

– Data is usually 512 bytes

– ECC field used to detect and recover from read errors

Cylinder Skew
• Why cylinder skew?

• How much skew?

• Example, if
– 10000 rpm

• Drive rotates in 6 ms

– Track has 300 sectors

• New sector every 20 µs

– If track seek time 800 µs

40 sectors pass on seek

Cylinder skew: 40 sectors

Formatting and Performance

• If 10K rpm, 300 sectors of 512 bytes per track

– 153600 bytes every 6 ms  24.4 MB/sec transfer rate

• If disk controller buffer can store only one sector

– For 2 consecutive reads, 2nd sector flies past during memory

transfer of 1st track

– Idea: Use single/double interleaving

Disk Partitioning

• Each partition is like a separate disk

• Sector 0 is MBR

– Contains boot code + partition table

– Partition table has starting sector and size of each partition

• High-level formatting

– Done for each partition

– Specifies boot block, free list, root directory, empty file system

• What happens on boot?

– BIOS loads MBR, boot program checks to see active partition

– Reads boot sector from that partition that then loads OS kernel, etc.

Handling Errors

• A disk track with a bad sector

• Solutions:

– Substitute a spare for the bad sector (sector sparing)

– Shift all sectors to bypass bad one (sector forwarding)

RAID Motivation
• Disks are improving, but not as fast as CPUs

– 1970s seek time: 50-100 ms.

– 2000s seek time: <5 ms.

– Factor of 20 improvement in 3 decades

• We can use multiple disks for improving performance

– By Striping files across multiple disks (placing parts of each file on

a different disk), parallel I/O can improve access time

• Striping reduces reliability

– 100 disks have 1/100th mean time between failures of one disk

• So, we need Striping for performance, but we need something to help

with reliability / availability

• To improve reliability, we can add redundant data to the disks, in

addition to Striping

RAID

• A RAID is a Redundant Array of Inexpensive Disks

– In industry, “I” is for “Independent”

– The alternative is SLED, single large expensive disk

• Disks are small and cheap, so it’s easy to put lots of disks (10s

to 100s) in one box for increased storage, performance, and

availability

• The RAID box with a RAID controller looks just like a SLED to

the computer

• Data plus some redundant information is Striped across the

disks in some way

• How that Striping is done is key to performance and reliability.

Some Raid Issues

• Granularity

– fine-grained: Stripe each file over all disks. This gives high

throughput for the file, but limits to transfer of 1 file at a time

– coarse-grained: Stripe each file over only a few disks. This limits

throughput for 1 file but allows more parallel file access

• Redundancy

– uniformly distribute redundancy info on disks: avoids load-

balancing problems

– concentrate redundancy info on a small number of disks: partition

the set into data disks and redundant disks

Raid Level 0

• Level 0 is nonredundant disk array

• Files are Striped across disks, no redundant info

• High read throughput

• Best write throughput (no redundant info to write)

• Any disk failure results in data loss

– Reliability worse than SLED

Stripe 0

Stripe 4

Stripe 3 Stripe 1 Stripe 2

Stripe 8 Stripe 10 Stripe 11

Stripe 7 Stripe 6 Stripe 5

Stripe 9

data disks

Raid Level 1

• Mirrored Disks

• Data is written to two places

– On failure, just use surviving disk

• On read, choose fastest to read

– Write performance is same as single drive, read performance

is 2x better

• Expensive

data disks mirror copies

Stripe 0

Stripe 4

Stripe 3 Stripe 1 Stripe 2

Stripe 8 Stripe 10 Stripe 11

Stripe 7 Stripe 6 Stripe 5

Stripe 9

Stripe 0

Stripe 4

Stripe 3 Stripe 1 Stripe 2

Stripe 8 Stripe 10 Stripe 11

Stripe 7 Stripe 6 Stripe 5

Stripe 9

Parity and Hamming Codes
• What do you need to do in order to detect and correct a one-bit

error ?

– Suppose you have a binary number, represented as a collection of

bits: <b3, b2, b1, b0>, e.g. 0110

• Detection is easy

• Parity:

– Count the number of bits that are on, see if it’s odd or even

• EVEN parity is 0 if the number of 1 bits is even

– Parity(<b3, b2, b1, b0 >) = P0 = b0  b1  b2  b3

– Parity(<b3, b2, b1, b0, p0>) = 0 if all bits are intact

– Parity(0110) = 0, Parity(01100) = 0

– Parity(11100) = 1 => ERROR!

– Parity can detect a single error, but can’t tell you which of the bits

got flipped

Parity and Hamming Code
• Detection and correction require more work

• Hamming codes can detect double bit errors and detect & correct

single bit errors

• 7/4 Hamming Code

– h0 = b0  b1  b3

– h1 = b0  b2  b3

– h2 = b1  b2  b3

– H0(<1101>) = 0

– H1(<1101>) = 1

– H2(<1101>) = 0

– Hamming(<1101>) = <b3, b2, b1, h2, b0, h1, h0> = <1100110>

– If a bit is flipped, e.g. <1110110>

– Hamming(<1111>) = <h2, h1, h0> = <111> compared to <010>, <101> are

in error. Error occurred in bit 5.

Raid Level 2
• Bit-level Striping with Hamming (ECC) codes for error correction

• All 7 disk arms are synchronized and move in unison

• Complicated controller

• Single access at a time

• Tolerates only one error, but with no performance degradation

data disks

Bit 0 Bit 3 Bit 1 Bit 2 Bit 4 Bit 5 Bit 6

ECC disks

Raid Level 3

• Use a parity disk

– Each bit on the parity disk is a parity function of the corresponding

bits on all the other disks

• A read accesses all the data disks

• A write accesses all data disks plus the parity disk

• On disk failure, read remaining disks plus parity disk to compute

the missing data

data disks

Parity disk

Bit 0 Bit 3 Bit 1 Bit 2 Parity
Single parity disk can be used

to detect and correct errors

Raid Level 4

• Combines Level 0 and 3 – block-level parity with Stripes

• A read accesses all the data disks

• A write accesses all data disks plus the parity disk

• Heavy load on the parity disk

data disks

Parity disk

Stripe 0 Stripe 3 Stripe 1 Stripe 2 P0-3

Stripe 4

Stripe 8 Stripe 10 Stripe 11

Stripe 7 Stripe 6 Stripe 5

Stripe 9

P4-7

P8-11

Raid Level 5

• Block Interleaved Distributed Parity

• Like parity scheme, but distribute the parity info over all

disks (as well as data over all disks)

• Better read performance, large write performance

– Reads can outperform SLEDs and RAID-0

data and parity disks

Stripe 0 Stripe 3 Stripe 1 Stripe 2 P0-3

Stripe 4

Stripe 8 P8-11 Stripe 10

P4-7 Stripe 6 Stripe 5

Stripe 9

Stripe 7

Stripe 11

Raid Level 6

• Level 5 with an extra parity bit

• Can tolerate two failures

– What are the odds of having two concurrent failures ?

• May outperform Level-5 on reads, slower on writes

RAID 0+1 and 1+0

Stable Storage
• Handling disk write errors:

– Write lays down bad data

– Crash during a write corrupts original data

• What we want to achieve? Stable Storage

– When a write is issued, the disk either correctly writes data, or it does

nothing, leaving existing data intact

• Model:

– An incorrect disk write can be detected by looking at the ECC

– It is very rare that same sector goes bad on multiple disks

– CPU is fail-stop

Approach • Use 2 identical disks

– corresponding blocks on both drives are the same

• 3 operations:

– Stable write: retry on 1st until successful, then try 2nd disk

– Stable read: read from 1st. If ECC error, then try 2nd

– Crash recovery: scan corresponding blocks on both disks

• If one block is bad, replace with good one

• If both are good, replace block in 2nd with the one in 1st

CD-ROMs

Spiral makes 22,188 revolutions around disk (approx 600/mm).

Will be 5.6 km long. Rotation rate: 530 rpm to 200 rpm

CD-ROMs

Logical data layout on a CD-ROM

