Disks and RAID

50 Years Old!

« 13th September 1956
 The IBM RAMAC 350

© CNET Networks

e 80000 times more data on the 8GB 1-inch

drive in his right hand than on the 24-inch
RAMAC one in his left...

What doesﬂthe disk look like?

track t

sector s

cylinder ¢

platter

|
|
|
|
|
|
g
|
|

)

rotation

«— spindle

arm

read-write
head

+

— arm assembly

Some parameters

2-30 heads (platters * 2)
— diameter 14" to 2.5”

700-20480 tracks per surface
16-1600 sectors per track

sector size:

— 64-8k bytes

— 512 for most PCs

— note: inter-sector gaps

capacity: 20M-100G

main adjectives: BIG, slow

Disk overheads

« To read from disk, we must specify:
— cylinder #, surface #, sector #, transfer size, memory address

« Transfer time includes:
— Seek time: to get to the track
— Latency time: to get to the sector and
— Transfer time: get bits off the disk

Track

Sector

Rotation

Seek Time Delay

Modern disks

Barracuda Cheetah X15 36LP
180
Capacity 181GB 36.7GB
Disk/Heads 12/24 4/8
Cylinders 24,247 18,479
Sectors/track ~609 ~485
Speed /200RPM 15000RPM
Latency (ms) 4.17 2.0
Avg seek (ms) 7.4/8.2 3.6/4.2
Track-2- 0.8/1.1 0.3/0.4

Disks vs. Memory

Smallest write: sector * (usually) bytes
Atomic write = sector * byte, word

Random access: 5ms « 50ns

— not on a good curve — faster all the time
Sequential access: 200MB/s + 200-1000MB/s
Cost $.002MB $.10MB

Crash: doesn’t matter ("non- + contents gone (“volatile”)
volatile”)

Disk Structure

» Disk drives addressed as 1-dim arrays of logical blocks
— the logical block is the smallest unit of transfer

« This array mapped sequentially onto disk sectors
— Address 0 is 15t sector of 1st track of the outermost cylinder

— Addresses incremented within track, then within tracks of the
cylinder, then across cylinders, from innermost to outermost

« Translation is theoretically possible, but usually difficult
— Some sectors might be defective
— Number of sectors per track is not a constant

Non-uniform #sectors / track

Reduce bit density per track for outer layers (Constant
Linear Velocity, typically HDDs)

Have more sectors per track on the outer layers, and
Increase rotational speed when reading from outer tracks
(Constant Angular Velcity, typically CDs, DVDs)

Disk Scheduling

The operating system tries to use hardware efficiently
— for disk drives = having fast access time, disk bandwidth
Access time has two major components

— Seek time is time to move the heads to the cylinder containing the
desired sector

— Rotational latency is additional time waiting to rotate the desired
sector to the disk head.

Minimize seek time
Seek time = seek distance

Disk bandwidth is total number of bytes transferred, divided by
the total time between the first request for service and the
completion of the last transfer.

Disk Scheduling (Cont.)

« Several scheduling algos exist service disk I/O
requests.
« We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

lllustration shows total head movement of 640 cylinders.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|

SSTF

Selects request with minimum seek time from current
head position

SSTF scheduling is a form of SJF scheduling
— may cause starvation of some requests.

lllustration shows total head movement of 236
cylinders.

SSTF (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124 183199

SCAN

The disk arm starts at one end of the disk,

— moves toward the other end, servicing requests

— head movement is reversed when it gets to the other end of
disk

— servicing continues.

Sometimes called the elevator algorithm.

lllustration shows total head movement of 208
cylinders.

SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

C-SCAN

Provides a more uniform wait time than SCAN.

The head moves from one end of the disk to the
other.

— servicing requests as it goes.

— When it reaches the other end it immediately returns to

beginning of the disk
* No requests serviced on the return trip.

Treats the cylinders as a circular list

— that wraps around from the last cylinder to the first one.

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
14 37 536567 98 122124 183199

— O

C-LOOK

 Version of C-SCAN

« Arm only goes as far as last request in each
direction,
— then reverses direction immediately,
— without first going all the way to the end of the disk.

C-LOOK (Cont.)

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124 183199
I
I

N

Selecting a Good Algorithm

SSTF is common and has a natural appeal
SCAN and C-SCAN perform better under heavy load
Performance depends on number and types of requests

Requests for disk service can be influenced by the file-allocation
method.

Disk-scheduling algorithm should be a separate OS module
— allowing it to be replaced with a different algorithm if necessary.

Either SSTF or LOOK is a reasonable default algorithm

Disk Formatting

« After manufacturing disk has no information

— Is stack of platters coated with magnetizable metal oxide
« Before use, each platter receives low-level format

— Format has series of concentric tracks

— Each track contains some sectors

— There is a short gap between sectors

Preamble

Data

ECC

— Also contains cylinder and sector numbers
— Data is usually 512 bytes
— ECC field used to detect and recover from read errors

Cylinder Skew

* Why cylinder skew? s | 1

« How much skew?
« Example, if

— 10000 rpm
* Drive rotates in 6 ms
— Track has 300 sectors @ =
* New sector every 20 us

— If track seek time 800 ps
=40 sectors pass on seek

— QY] Q

[%¢]
(>~ |3l

Cylinder skew: 40 sectors

Formatting and Performance

« If 10K rpm, 300 sectors of 512 bytes per track
— 153600 bytes every 6 ms = 24.4 MB/sec transfer rate

 If disk controller buffer can store only one sector

— For 2 consecutive reads, 2" sector flies past during memory
transfer of 1t track

— ldea: Use sinale/double interleavina

Disk Partitioning

Each partition is like a separate disk

Sector 0 is MBR

— Contains boot code + partition table

— Partition table has starting sector and size of each partition
High-level formatting

— Done for each partition

— Specifies boot block, free list, root directory, empty file system
What happens on boot?

— BIOS loads MBR, boot program checks to see active partition

— Reads boot sector from that partition that then loads OS kernel, etc.

Handling Errors

* A disk track with a bad sector

« Solutions:
— Substitute a spare for the bad sector (sector sparing)
— Shift all sectors to bypass bad one (sector forwarding)

RAID Motivation

Disks are improving, but not as fast as CPUs
— 1970s seek time: 50-100 ms.
— 2000s seek time: <5 ms.
— Factor of 20 improvement in 3 decades
We can use multiple disks for improving performance
— By Striping files across multiple disks (placing parts of each file on
a different disk), parallel I/O can improve access time
Striping reduces reliability
— 100 disks have 1/100th mean time between failures of one disk
So, we need Striping for performance, but we need something to help
with reliability / availability

To improve reliability, we can add redundant data to the disks, in
addition to Striping

RAID

A RAID is a Redundant Array of Inexpensive Disks
— Inindustry, “I” is for “Independent”
— The alternative is SLED, single large expensive disk
Disks are small and cheap, so it's easy to put lots of disks (10s

to 100s) in one box for increased storage, performance, and
availability

The RAID box with a RAID controller looks just like a SLED to
the computer

Data plus some redundant information is Striped across the
disks in some way

How that Striping is done is key to performance and reliability.

Some Raid Issues

* Granularity

— fine-grained: Stripe each file over all disks. This gives high
throughput for the file, but limits to transfer of 1 file at a time

— coarse-grained: Stripe each file over only a few disks. This limits
throughput for 1 file but allows more parallel file access

« Redundancy

— uniformly distribute redundancy info on disks: avoids load-
balancing problems

— concentrate redundancy info on a small number of disks: partition
the set into data disks and redundant disks

Raid Level O

Level O is nonredundant disk array

Files are Striped across disks, no redundant info
High read throughput

Best write throughput (no redundant info to write)

Any disk failure results in data loss
— Reliability worse than SLED

Y Y Y Y
Stripe O Stripe 1 Stripe 2 Stripe 3
: : - Stripe 7
Stripe 4 Stripe 5 Stripe 6
\/
Stripe 8 Stripe 9 Stripe 10 Stripe 11
\\/ N N %

data disks

Raid Level 1

« Mirrored Disks
« Data is written to two places
— On failure, just use surviving disk

« Onread, choose fastest to read
— Write performance is same as single drive, read performance

IS 2X better
 EXpensive

N N Y

Stripe 0 Stripe 1 Stripe 2 Stripe 3

Stripe 4 Stripe 5 Stripe 6 Stripe 7
_/

Stripe 8 Stripe 9 Stripe 19 | Stripe 11

data disks mirror copies

Parity and Hamming Codes

What do you need to do in order to detect and correct a one-bit
error ?

Suppose you have a binary number, represented as a collection of
bits: <b3, b2, b1, b0>, e.g. 0110

Detection is easy
Parity:

Count the number of bits that are on, see if it's odd or even
« EVEN parity is 0 if the number of 1 bits is even

Parity(<b3, b2, b1, b0 >) =P0=b0 ® bl ® b2 ® b3
Parity(<b3, b2, b1, b0, p0>) = 0 if all bits are intact
Parity(0110) = O, Parity(01100) =0

Parity(11100) = 1 => ERROR!

Parity can detect a single error, but can’t tell you which of the bits
got flipped

Parity and Hamming Code

Detection and correction require more work

Hamming codes can detect double bit errors and detect & correct
single bit errors
7/4 Hamming Code
— h0O=b0® bl ® b3
— hl1=b0® b2 ® b3
— h2=0b1® b2 ® b3
— HO0(<1101>) =0
— H1(<1101>) =1
— H2(<1101>) =0
— Hamming(<1101>) = <b3, b2, b1, h2, b0, hl, h0>=<1100110>
— Ifabitis flipped, e.g. <1110110>

— Hamming(<1111>) = <h2, h1l, h0> = <111> compared to <010>, <101> are
in error. Error occurred in bit 5.

Raid Level 2

« Bit-level Striping with Hamming (ECC) codes for error correction
« All 7 disk arms are synchronized and move in unison

« Complicated controller

« Single access at a time

« Tolerates only one error, but with no performance degradation

N N YN Y
N I N I N I N
Bit O Bit 1 Bit 2 Bit 3
N N A A y
V

data disks ECC disks

Raid Level 3

« Use a parity disk

Y

bits on all the other disks
« A read accesses all the data disks
« A write accesses all data disks plus the parity disk

* On disk failure, read remaining disks plus parity disk to compute
the missing data

Y
N

Bit 1

\/

NS

Y
N

Bit 2

\/

NS

Y
N

Bit 3

\/

N
J

~

data disks

Parity disk

— Each bit on the parity disk is a parity function of the corresponding

Single parity disk can be used
to detect and correct errors

Heavy load on the parity disk

Raid Level 4

Combines Level 0 and 3 — block-level parity with Stripes
A read accesses all the data disks
A write accesses all data disks plus the parity disk

N N YN Y
) P I N B N B N
Stripe O Stripe 1 Stripe 2 Stripe 3
Stripe 4 Stripe 5 Stripe 6 Stripe 7
Stripe 8 @ W Stripe 11

data disks

Parity disk

Like parity scheme, but distribute the parity info over all

Raid Level 5

Block Interleaved Distributed Parity

disks (as well as data over all disks)

Better read performance, large write performance

— Reads can outperform SLEDs and RAID-0

N N N N Y
N I N I NG B N I N
Stripe O Stripe 1 Stripe 2 Stripe 3 PO-3
\/
Stripe 4 Stripe 5 Stripe 6 P4-7 Stripe 7 |
Stripe 8 S\tri@ @ Stripe 10 Stripe 11

data and parity disks

J

Raid Level 6

« Level 5 with an extra parity bit

« Can tolerate two failures
— What are the odds of having two concurrent failures ?

« May outperform Level-5 on reads, slower on writes

RAID 0+1 and 1+0
4 [
)

stripe * U >
I mirror
— g —
stripe « >
. o

a) RAID O + 1 with a single disk failure.

stripe - |
mirror mirror mirror | mirrot

@@

b) RAID 1 + 0 with a single disk failure.

O e o O

Stable Storage

« Handling disk write errors:
— Write lays down bad data
— Crash during a write corrupts original data

 What we want to achieve? Stable Storage

— When a write is issued, the disk either correctly writes data, or it does
nothing, leaving existing data intact

 Model:
— An incorrect disk write can be detected by looking at the ECC
— It is very rare that same sector goes bad on multiple disks
— CPU is fail-stop

 Use 2 identical disl!sa‘pprOaCh

— corresponding blocks on both drives are the same

« 3 operations:
— Stable write: retry on 15t until successful, then try 2" disk
— Stable read: read from 1st. If ECC error, then try 2nd

— Crash recovery: scan corresponding blocks on both disks
 If one block is bad, replace with good one

« If both are good, replace block in 2"d with the one in 15t
ECC
Disk el pisk Disk Disk Disk
1 2 \ 1 2 1 2 1

New New

NN

%

Old Old é Old New| [Old New
%

f f f f

Crash Crash Crash Crash Crash
(a) (b) (c) (d) (e)

Spiral groove

2K block of
user data

Spiral makes 22,188 revolutions around disk (approx 600/mm).
Will be 5.6 km long. Rotation rate: 530 rpm to 200 rpm

CD-ROMs

Symbols of
BB0 = BBH 44 bits each

142 Symbols make 1 frame

Frames of 588 bits,
e e e e e Y e e OO D000 02 each containing
. 24 data bytes

Preamble l 98 Frames make 1 sector
| Mode 1
Data ECC sector
(2352 bytes)
Bytes 16 2048 288

Logical data layout on a CD-ROM

