
Project 1

Project 1
Non-Preemptive Multitasking (with minithreads)

Sean Ogden

Slide heritage: Previous TAs→ Robert Escriva→ Zhiyuan Teo→ Ayush Dubey

Cornell CS 4411, September 6, 2013

Project 1

Announcements

Project 1 will be published today, due September 22,
2013.
Make sure you are added on CMS for CS 4411, and
that you have been assigned a group partner.
Students without partners who haven’t contacted us
will be purged from CMS soon (see course webpage
for list).
No formal lecture next week; instead an FAQ session
with some tips.
Email cs4410staff@systems.cs.cornell.edu
for help.

Project 1

Project Scope

Outline

1 Project Scope

2 Implementation details
Queues
Minithread structure
Semaphores

3 Concluding Advice

Project 1

Project Scope

Goals of this project

Learn how threading and scheduling work.
Learn simple synchronization primitives.
Actually implement said processes.∗

∗
“In theory, there is no difference between theory and practice. But, in practice, there is.” Jan L. A. van de

Snepscheut

Project 1

Project Scope

Deliverables

A working implementation of minithreads.
Required pieces (we recommend this order for
implementation)

FIFO Queue with “O(1)” append/prepend/dequeue.
Non-preemptive threads and FCFS scheduling.
Semaphore implementation.
A simple "retail shop" application.

Optional (for those itching to start part II):
Add preemption.
Optional material is not graded (yet); focus on getting Part 1
right.

Project 1

Project Scope

What are minithreads?

User-level threads for Windows/OSX/Linux
User-level threads can perform better in some cases.
User-level threads can also be useful in OSes that do not
provide kernel level threads.

Project 1

Project Scope

Kernel threads

Project 1

Project Scope

User threads

Project 1

Project Scope

Starting point

Interfaces for the queue (queue.h), minithreads
(minithread.h), and semaphores (synch.h).
Machine specific parts (machineprimitives.h).

Context switching, stack initialization, etc.
Simple (non-exhaustive) test applications.

Statistically, there are a large number of untested potential
bugs.
Write some tests of your own (be abusive to minithreads; it
can take it).

Project 1

Implementation details

Outline

1 Project Scope

2 Implementation details
Queues
Minithread structure
Semaphores

3 Concluding Advice

Project 1

Implementation details

Minithreads structure

minithread.h

minithread.c*

machineprimitives.h

machineprimitives.c

synch.h

synch.c*

queue.h

queue.c*

* files to finish implementing

Project 1

Implementation details

Queues

Queues

head tail

0xdead

NULL

1

0xbeef

0xcafe

0xbeef

3

NULL

0xbeef

0xdead

2

0xcafe

Singly- or
doubly-linked lists
can both satisfy
O(1).
Data in queue is
stored as void *

Allows the queue
to hold arbitrary
data (that is the
size of a pointer).

queue_dequeue
takes void **.

Project 1

Implementation details

Queues

Examples of queue_dequeue

Usage:

void *datum = NULL;
queue_dequeue(run_queue, &datum);
/* check return value */

Internals:

int queue_dequeue(queue_t queue,
void **item) {

*item = queue->head->datum;
}

Project 1

Implementation details

Minithread structure

Minithread structure

Need to create a Thread Control Block (TCB) for each
thread.
The TCB must have:

Stack top pointer (saved esp).
Stack base pointer (given to us by
minithread_allocate_stack).
Thread identifier.
Anything else you find useful.

Project 1

Implementation details

Minithread structure

Operations to implement (minithread.c)

minithread_t minithread_fork(proc, arg);
Create a thread and make it runnable.

minithread_t minithread_create(proc, arg);
Create a thread and but don’t make it
runnable.

void minithread_yield(); Voluntarily give up CPU;
let another thread in the run queue run.

Project 1

Implementation details

Minithread structure

Operations to implement (minithread.c)

void minithread_start(minithread_t t);
Makes a thread runnable by putting it onto the
ready queue. Useful in semaphore
operations, or to start a thread after it has
been created through
minithread_create().

void minithread_stop(); Stops running a thread
immediately (ie blocks the thread); the next
scheduled thread on the ready queue should
run. Also useful in semaphore operations.

Project 1

Implementation details

Minithread structure

Creating minithreads

Two methods
minithread_t minithread_create(proc, arg);
minithread_t minithread_fork(proc, arg);

proc is a proc_t (a function pointer)

/* the definition of arg_t */
typedef int* arg_t;
/* the definition of proc_t */
typedef int (*proc_t) (arg_t);
/* how you declare a proc_t */
int run_this_proc (arg_t arg);

Project 1

Implementation details

Minithread structure

Create/fork internals

We give you functions to allocate and initialize the stack.
Here’s how they are defined:

void minithread_allocate_stack
(stack_pointer_t *stackbase,
stack_pointer_t *stacktop);

extern void minithread_initialize_stack
(stack_pointer_t *stacktop,
proc_t body_proc,
arg_t body_arg,
proc_t final_proc,
arg_t final_arg);

Project 1

Implementation details

Minithread structure

minithread_initialize_stack

Sets up your stack to look as though a context switch
occurred.

stack_top

0xff0 final_proc addr

0xfec final_arg

0xfe8 body_proc addr

0xfe4 body_arg

0xfe0 root_proc addr

stack_base

Project 1

Implementation details

Minithread structure

Context switching

Swap the currently executing thread with one from the
run queue.
State to save:

Registers
Program counter
Stack pointer

We give you a function for this:

void minithread_switch
(stack_pointer_t *old_thread_sp,
stack_pointer_t *new_thread_sp);

Project 1

Implementation details

Minithread structure

Before starting a context switch

old_thread_sp new_thread_sp

state

esp

Project 1

Implementation details

Minithread structure

Push old context

old_thread_sp new_thread_sp

state

state

esp

Project 1

Implementation details

Minithread structure

Change stack pointers

old_thread_sp new_thread_sp

state

state

esp

Project 1

Implementation details

Minithread structure

Pop off new context

old_thread_sp new_thread_sp

state

esp

Project 1

Implementation details

Minithread structure

Yielding a thread

We haven’t specified any preemption. We need a way
to voluntarily switch between threads.

void minithread_yield();

Use minithread_switch to implement
minithread_yield

What happens to the yielding thread?

Project 1

Implementation details

Minithread structure

final_proc

final_proc is responsible for cleaning up the TCB,
and stack after your thread terminates.
It’s not safe for a thread to free its own stack or TCB.
Solution: Dedicated cleanup thread.

It should wait for threads to be ready for cleanup; otherwise
it should be blocked.

Project 1

Implementation details

Minithread structure

Summary of minithread lifecycle

Project 1

Implementation details

Minithread structure

Initializing minithreads

void minithread_system_initialize
(proc_t mainproc,
arg_t mainarg);

Starts up the system, and initializes global
datastructures.
Creates a thread to run mainproc(mainarg)

This should be where all queues, global semaphores,
etc. are initialized.

Project 1

Implementation details

Minithread structure

What about our Windows thread?

We have a kernel thread used to call
minithread_system_initialize. What should I
do with it?

Re-use this thread as one of your behind-the-scenes
threads.
Be careful not to cleanup or exit this thread.

The program should never really exit, so it is a good
idea to use the Windows thread (which never should
be terminated) as the idle thread.

Project 1

Implementation details

Minithread structure

How to reuse the original stack for the idle thread

Create a TCB for the idle thread in
minithread_system_initialize.
In the TCB, set stacktop and stackbase to NULL.

Don’t need stacktop because the stack is already
initialized.
Don’t need stackbase because the stack will never be
freed.

What code should the idle thread execute?

Project 1

Implementation details

Semaphores

A quick primer on concurrency

Race condition: result of computation depends on the
relative running speed of threads.

Multiple concurrent threads reading from/writing to the
same memory location.
E.g. two threads manipulating a linked list.

Atomic operation: either the operation goes to
completion, or fails altogether.

Project 1

Implementation details

Semaphores

Solution: synchronization

We want critical section of code to run without other
threads interfering.

queue process_queue;
lock process_queue_lock;
void manipulate_queue {

lock_acquire (process_queue_lock);
/* critical section begins */

queue_dequeue (process_queue);
queue_append (minithread_self);

/* critical section ends */
lock_release (process_queue_lock);

}
Beware: deadlock and starvation!

Project 1

Implementation details

Semaphores

Semaphores

A synchronization primitive used to limit the number
of threads accessing a shared resource.
You decide how many threads can concurrently hold
the semaphore when initializing it.
Semaphore value is manipulated atomically:

semaphore_P: decrements the value by 1, if value
becomes ≤ 0 blocks the thread (wait)
semaphore_V: increments the value by 1, if value was ≤ 0
then unblocks one waiting thread (signal)

Special case: binary semaphore is a lock.

Project 1

Implementation details

Semaphores

Semaphore operations

semaphore_t semaphore_create(); Create a
semaphore (and allocate its resources).

void semaphore_destroy(semaphore_t); Destroy
a semaphore (and free its resources).

void semaphore_initialize(semaphore_t, int);
Set the initial value of a semaphore (how
many semaphore_P functions may be called
without blocking).

void semaphore_P(semaphore_t); Decrements a
semaphore; (block if value ≤ 0 before
decrementing).

void semaphore_V(semaphore_t); Increments a
semaphore, unblocking a thread that is
blocked on it.

Project 1

Concluding Advice

Outline

1 Project Scope

2 Implementation details
Queues
Minithread structure
Semaphores

3 Concluding Advice

Project 1

Concluding Advice

Submitting your work

Include a README file with your names and net IDs.
Write SHORT notes about anything you think we
should know (e.g. broken code).
This README should be nearly empty as all of your
code should work and be well-tested.

Project 1

Concluding Advice

Concluding Advice

Manage your memory and pointer, for they are the
key to bug-free code.
Write clean and understandable code.

Variables should have proper names (e.g.
stack_pointer not lol)
Provide meaningful comments (but do not comment in
excess).
Make your intentions clear. Do not make us make
assumptions about what you wrote. This is a simple project,
and we should be able to understand what you are doing
with minimal effort.

Do not terminate when program threads are done.
Idle threads never terminate.
Good luck!

Project 1

Concluding Advice

Project 1
Non-Preemptive Multitasking (with minithreads)

Sean Ogden
sean @ cs

September 6, 2013

	Project Scope
	Implementation details
	Queues
	Minithread structure
	Semaphores

	Concluding Advice

