Project 1

Project 1

Non-Preemptive Multitasking (with minithreads)

Sean Ogden

Slide heritage: Previous TAs — Robert Escriva — Zhiyuan Teo — Ayush Dubey

Cornell CS 4411, September 6, 2013

Project 1

Announcements

m Project 1 will be published today, due September 22,
2013.

m Make sure you are added on CMS for CS 4411, and
that you have been assigned a group partner.

m Students without partners who haven’t contacted us
will be purged from CMS soon (see course webpage
for list).

m No formal lecture next week; instead an FAQ session
with some tips.

m Email cs4410staff@systems.cs.cornell.edu
for help.

Project 1

L Project Scope

Outline

Project Scope

Project 1

L Project Scope

Goals of this project

m Learn how threading and scheduling work.
m Learn simple synchronization primitives.
m Actually implement said processes.*

*n theory, there is no difference between theory and practice. But, in practice, there is.” Jan L. A. van de
Snepscheut

Project 1

L Project Scope

Deliverables

m A working implementation of minithreads.

m Required pieces (we recommend this order for
implementation)
m FIFO Queue with “O(1)” append/prepend/dequeue.
m Non-preemptive threads and FCFS scheduling.
m Semaphore implementation.
m A simple "retail shop" application.

m Optional (for those itching to start part I):

m Add preemption.
m Optional material is not graded (yet); focus on getting Part 1
right.

Project 1

L Project Scope

What are minithreads?

m User-level threads for Windows/OSX/Linux
m User-level threads can perform better in some cases.
m User-level threads can also be useful in OSes that do not
provide kernel level threads.

Project 1

L Project Scope

Kernel threads

process

user thread

—>

user thread

user thread

kernel
thread

kernel
thread

kernel
thread

Project 1

L Project Scope

User threads

process

user thread

user thread

user thread

W

scheduler

A

kernel
thread

Project 1

L Project Scope

Starting point

m Interfaces for the queue (queue . h), minithreads
(minithread.h), and semaphores (synch.h).
m Machine specific parts (machineprimitives.h).
m Context switching, stack initialization, etc.
m Simple (non-exhaustive) test applications.
m Statistically, there are a large number of untested potential
bugs.
[Wr?te some tests of your own (be abusive to minithreads; it
can take it).

Project 1

L Implementation details

Outline

Implementation details
m Queues
m Minithread structure
m Semaphores

Project 1

L Implementation details

Minithreads structure

machineprimitives.h

machineprimitives.c

minithread.h

minithread.c*

synch.h

synch.c*

queue.h

queue.c*

* files to finish implementing

Project 1

L Implementation details

LCJueues

Queues

m Singly- or
- doubly-linked lists
NULL can both satisfy
Oxdead 1 0(1)
Oxbeef . .
m Data in queue is
3 stored as void =«
Oxdead m Allows the queue
Oxbeef | 2 to hold arbitrary
Oxcafe data (that iS the
/ size of a pointer).
Oxbeef B queue_dequeue
Oxcafe 3 takeS VOld * k.
NULL

Project 1
L Implementation details
LCJueues

Examples of queue_dequeue

Usage:

void *datum = NULL;
queue_dequeue (run_queue, &datum);
/* check return value =/

Internals:

int queue_dequeue (queue_t queue,
void #=*item) {
*item = queue->head->datum;

Project 1
L Implementation details
L Minithread structure

Minithread structure

m Need to create a Thread Control Block (TCB) for each
thread.
m The TCB must have:

m Stack top pointer (saved esp).

m Stack base pointer (given to us by
minithread_allocate_stack).

m Thread identifier.

m Anything else you find useful.

Project 1
L Implementation details

L Minithread structure

Operations to implement (minithread. c)

minithread_t minithread_fork (proc, arqg);
Create a thread and make it runnable.

minithread_t minithread_create(proc, arqg);
Create a thread and but don’t make it
runnable.

void minithread_yield(); Voluntarily give up CPU;
let another thread in the run queue run.

Project 1
L Implementation details

L Minithread structure

Operations to implement (minithread. c)

void minithread_start (minithread_t t);
Makes a thread runnable by putting it onto the
ready queue. Useful in semaphore
operations, or to start a thread after it has
been created through
minithread_create().

void minithread_stop(); Stopsrunning a thread
immediately (ie blocks the thread); the next
scheduled thread on the ready queue should
run. Also useful in semaphore operations.

Project 1
L Implementation details
L Minithread structure

Creating minithreads

m Two methods
B minithread_t minithread_create(proc, arqg);
B minithread_t minithread_fork (proc, arg);

m proc is aproc_t (a function pointer)

/* the definition of arg_t =*/
typedef int* arg_t;

/* the definition of proc_t */
typedef int (*xproc_t) (arg_t);
/* how you declare a proc_t =/
int run_this_proc (arg_t arg);

Project 1
L Implementation details

L Minithread structure

Create/fork internals

We give you functions to allocate and initialize the stack.
Here’s how they are defined:

void minithread_allocate_stack
(stack_pointer_t =*stackbase,
stack_pointer_t *stacktop);
extern void minithread_initialize_stack
(stack_pointer_t =xstacktop,
proc_t body_proc,
arg_t body_arg,
proc_t final proc,
arg_t final_argqg);

Project 1
L Implementation details

L Minithread structure

minithread initialize stack

Sets up your stack to look as though a context switch
occurred.

stack_base —0xff0|final_proc addr

Oxfec final arg

Oxfe8| body_proc addr

Oxfed body_arg
stack_top ——»»0xfel| root_proc addr

Project 1
L Implementation details

L Minithread structure

Context switching

m Swap the currently executing thread with one from the
run queue.
m State to save:

m Registers
m Program counter
m Stack pointer

m We give you a function for this:

void minithread_switch
(stack_pointer_t =xo0ld_thread_sp,
stack_pointer_t xnew_thread_ sp);

Project 1
L Implementation details

L Minithread structure

Before starting a context switch

old_thread_sp esp new_thread_sp

‘/ state

Project 1
L Implementation details

L Minithread structure

Push old context

old_thread_sp esp new_thread_sp

state

state

Project 1
L Implementation details

L Minithread structure

Change stack pointers

old_thread_sp esp new_thread_sp

state

state

Project 1
L Implementation details

L Minithread structure

Pop off new context

old_thread_sp esp new_thread_sp

state

Project 1
L Implementation details

L Minithread structure

Yielding a thread

m We haven'’t specified any preemption. We need a way
to voluntarily switch between threads.

void minithread_yield();

m Use minithread_switch to implement
minithread_yield

m What happens to the yielding thread?

Project 1
L Implementation details

L Minithread structure

final_proc

B final_proc is responsible for cleaning up the TCB,
and stack after your thread terminates.
m It's not safe for a thread to free its own stack or TCB.

m Solution: Dedicated cleanup thread.

m It should wait for threads to be ready for cleanup; otherwise
it should be blocked.

Project 1
L Implementation details

L Minithread structure

Summary of minithread lifecycle

minithread yield() when body_proc returns, epilogue code
final proc(args)isimmediately
thread gives up control of CPU called. This code should wake up the

cleanup thread to free the stack and TCB.

A context switch should be made to the

another thread yleldé, and this next runnable thread.

thread resumes execution again

control resumes from instruction
after minithread yield()

|

®min1thread_fo rk (body_proc, args)

thread terminates by executing
thread starts, body proc (args)is called. return from within body _proc.

Project 1
L Implementation details

L Minithread structure

Initializing minithreads

void minithread_system_initialize
(proc_t mainproc,
arg_t mainarg);

m Starts up the system, and initializes global
datastructures.

m Creates a thread to run mainproc (mainarg)

m This should be where all queues, global semaphores,
etc. are initialized.

Project 1
L Implementation details

L Minithread structure

What about our Windows thread?

m We have a kernel thread used to call
minithread_system_initialize. What should |
do with it?

m Re-use this thread as one of your behind-the-scenes
threads.
m Be careful not to cleanup or exit this thread.

m The program should never really exit, so it is a good
idea to use the Windows thread (which never should
be terminated) as the idle thread.

Project 1
L Implementation details

L Minithread structure

How to reuse the original stack for the idle thread

m Create a TCB for the idle thread in
minithread_system_initialize.
m Inthe TCB, set stacktop and stackbase to NULL.
m Don’t need stacktop because the stack is already
initialized.
m Don’t need stackbase because the stack will never be
freed.

m What code should the idle thread execute?

Project 1
L Implementation details

LSemaphores

A quick primer on concurrency

m Race condition: result of computation depends on the
relative running speed of threads.

m Multiple concurrent threads reading from/writing to the
same memory location.
m E.g. two threads manipulating a linked list.
m Atomic operation: either the operation goes to
completion, or fails altogether.

Project 1
L Implementation details

LSemaphores

Solution: synchronization

m We want critical section of code to run without other
threads interfering.

gueue process_queue;
lock process_qgqueue_lock;
void manipulate_queue {

lock_acquire (process_queue_lock);

/* critical section begins */
queue_dequeue (process_gueue);
queue_append (minithread_self);

/* critical section ends =/

lock_release (process_queue_lock);

}
m Beware: deadlock and starvation!

Project 1
L Implementation details

LSemaphores

Semaphores

m A synchronization primitive used to limit the number
of threads accessing a shared resource.

m You decide how many threads can concurrently hold
the semaphore when initializing it.

m Semaphore value is manipulated atomically:

B semaphore_P: decrements the value by 1, if value
becomes < 0 blocks the thread (wait)

B semaphore_V: increments the value by 1, if value was < 0
then unblocks one waiting thread (signal)

m Special case: binary semaphore is a lock.

Project 1
L Implementation details

LSemaphores

Semaphore operations

semaphore_t semaphore_create (); Create a
semaphore (and allocate its resources).

void semaphore_destroy (semaphore_t); Destroy
a semaphore (and free its resources).

void semaphore_initialize (semaphore_t, int);
Set the initial value of a semaphore (how
many semaphore_P functions may be called
without blocking).

void semaphore_ P (semaphore_t); Decrements a
semaphore; (block if value < 0 before
decrementing).

void semaphore_V (semaphore_t); Increments a
semaphore, unblocking a thread that is
blocked on it.

Project 1

LConcluding Advice

Outline

Concluding Advice

Project 1

LConcluding Advice

Submitting your work

m Include a README file with your names and net IDs.

m Write SHORT notes about anything you think we
should know (e.g. broken code).

m This README should be nearly empty as all of your
code should work and be well-tested.

Project 1

LConcluding Advice

Concluding Advice

m Manage your memory and pointer, for they are the
key to bug-free code.
m Write clean and understandable code.

m Variables should have proper names (e.g.
stack_pointer not 1ol)

m Provide meaningful comments (but do not comment in
excess).

m Make your intentions clear. Do not make us make
assumptions about what you wrote. This is a simple project,
and we should be able to understand what you are doing
with minimal effort.

m Do not terminate when program threads are done.

m Idle threads never terminate.
m Good luck!

Project 1
LConcluding Advice

Project 1
Non-Preemptive Multitasking (with minithreads)

Sean Ogden

sean @ cs

September 6, 2013

	Project Scope
	Implementation details
	Queues
	Minithread structure
	Semaphores

	Concluding Advice

