CS 4410
Operating Systems

Memory:
Hardware and Allocation

Summer 2013
Cornell University
Today

- How the memory is shared among the ready processes?
- Memory
- Address protection
- Logical vs Physical Address
- Contiguous memory allocation
Storage Hierarchy

- Hard Disk
- Memory
- Cache (L1, L2, L3)
- Registers
Memory

• A large array of words.
• Word = 4 or 8 bytes.
• One address for every word.

• Content:
 • Instructions
 • Data
Instruction execution cycle

- Fetch instruction from memory.
 - The PC saves its address.
- Decode instruction.
- Fetch operands form memory.
- Execute the instruction.
- Store result in memory.

- Program and data should be in Memory to become useful.
Memory Management

- Is memory shared between processes? How?

- Monoprogramming
 - Only one process is ready and loaded into memory.
 - It shares the memory space with the OS.
 - Is it efficient?

- Multiprogramming
 - Fixed or variable partitions for every ready process.
 - 2 problems: relocation, protection. Solutions?

- Timesharing
 - Swapping
 - Entire process (code, data) is transferred from disk to memory, and vice versa.
 - Virtual Memory
 - Processes can run when they are partially in the memory.
Memory Management

• What about the memory addresses?
 • Monoprogramming
 - The physical addresses are known to the programmer.
 • Multiprogramming
 - The physical addresses are known at the loading time.
 • Timesharing
 - The physical addresses are known at the execution.
 - The CPU understands logical addresses.
 - The Memory understands physical addresses.
Memory Management

• Basic concerns:
 • Allocation
 • Relocation
 • Protection
Hardware address protection

- Multitasking OS
- Multiple processes loaded in the memory.
- Each process has a separate memory space.
- HW+OS are responsible for address protection.

![Diagram showing address space allocation with base and limit values for different processes.]
Address Binding

- Logical \rightarrow Physical
- Execution time
 - Logical Address \leftrightarrow Virtual Address
- Memory-Management Unit (MMU)
 - Hardware device
 - Run-time mapping

![Diagram of address binding](chart.png)

<table>
<thead>
<tr>
<th>Logical address</th>
<th>Physical address</th>
</tr>
</thead>
<tbody>
<tr>
<td>346</td>
<td>14346</td>
</tr>
</tbody>
</table>

Relocation register: 14000
Logical vs Physical Address

- Multitasking OS
- Memory management: Swap, Virtual Memory
- Logical Address
 - Address generated by the CPU
 - Address loaded into PC
 - Address used in a program
- Physical Address
 - Address seen by the memory unit
Dynamic Loading

- Using Virtual memory:
- Better memory-space utilization
- The main program is loaded into memory.
- A routing of the program is not loaded until it is called.
- It is users' responsibility.
Dynamic Linking

• Using Virtual memory:
• Without this, each program should include a copy of its language library.
• It waists disk and memory space.

• With Dynamic Linking:
 • A stub substitutes a library-routine reference.
 • When stub is executed:
 – It checks if the routine is in the memory.
 – If not, the program loads the routine.
Contiguous Memory Allocation

- Share memory between OS and multiple processes.
- Each process is contained in a single contiguous section in memory.
- Memory protection:
 - CPU scheduler selects process for execution.
 - The dispatcher loads the relocation and limit registers.

![Diagram of memory allocation process]

- CPU
- Logical address
- Limit register
- Relocation register
- Physical address
- Memory
- Trap: addressing error
Allocation Strategies

- Fixed-sized partitions
 - The degree of multiprogramming is bound by the number of partitions.
- Variable-partition scheme
 - The OS keeps a table indicating which parts of memory are available and which are occupied.
 - The OS tries to fit the memory demands of a process in the available memory space.
- Dynamic storage allocation problem:
 - First fit
 - Best fit
 - Worst fit
Fragmentation

- External fragmentation
 - First-fit, Best fit
 - There is enough total memory space to satisfy a request but the available spaces are small and not contiguous.
- Solution 1: Break the physical memory into fixed-sized blocks and allocate memory in units based on block size.
 - Internal fragmentation: the allocated memory is slightly larger than the requested memory.
- Solution 2: Compaction
Today

• How the memory is shared among the ready processes?
• Memory
• Address protection
• Logical vs Physical Address
• Contiguous memory allocation