CS 4410
Operating Systems

Introduction & Logistics

Mike George (in for Elisavet Kozyri)
Summer 2013
Cornell University
Welcome!

Today:

• Logistics
• Introduction
 • Motivation
 • What is an OS?
 • Issues in OS Design
 • Why Learn Operating Systems?
• Draft schedule
Logistics

- **Class dates:**
 - May 20 - June 28, 2013
- **Days/times:**
 - M-F 8:30 AM - 9:45 AM
 - Upson Hall 207
- **Instructor:**
 - Elisavet Kozyril (with Mike George filling in for week 1)
 - Office Hours: MWF 10:00 AM - 11:00 AM, 331 Upson Hall
 - Email: ekozyri or mdgeorge at cs.cornell.edu
- **Webpage:**
 - www.cs.cornell.edu/CS4410/2013su/
Logistics

- Prior Knowledge
 - CS 3410, CS 3420
 - Programming experience
 - Computer architecture

- Course Readings
 - Operating System Concepts (8th Edition) Silberschatz, Galvin and Gagne

- Lectures
 - Intensive
 - Interactive
 - Please attend!
Logistics

- Homework
 - weekly assigned
 - independent work
 - theoretical + practical + review
 - synchronized with the lectures

- Mini-test
 - fifteen-minute in-class test
 - related to the previous assignment
 - easy, short, preparation time = 0

- Final Exam
 - June 28, 8:30 am
 - Upson Hall 207
Logistics

• Grading
 • from A+ to F
 • non-curved
 - 5% at instructor's discretion
 (participation, mini-presentation, etc)
 - 10% mini-tests
 - 40% assignments
 - 50% final exam
 • Remember: The target is the knowledge, not the grade!

• Academic Integrity
Just built a processor...want to write “Hello World”.

- Step 1: look up specs for the display
- Step 2: write subroutine to send commands to printer
- Step 3: Buy a new display
- Step 4: Rewrite your program

Welcome to 1950

- Libraries for I/O
Now I want to run two programs

- Only one set of:
 - Registers (pc)
 - Memory
 - Devices
- Multi-tasking
 - Run one program at a time
 - Switch between them
Enter the Operating System

- Abstraction
 - Provide uniform interface
- Virtualization
 - Make one device seem like many
- Isolation
 - Prevent programs from stomping on each other
- Access Control
 - Applications still need to control system
What is an Operating System?

Users
- Mary
- John

Applications
- Web-browser
- Word Processor
- Video Game

Operating System
- Scheduler
- Monitor Driver
- Network Driver
- Memory manager
- Disk manager

Hardware
- CPU
- Memory
- Disk
- Network card
- Monitor
Issues In OS Design

- Structure: how is an OS organized?
- Concurrency: how are parallel activities created and controlled?
- Sharing: how are resources shared?
- Naming: how are resources named by users?
- Protection: how are distrusting parties protected from each other?
- Security: how to authenticate, authorize and ensure privacy?
- Performance: why is it so slow?
More Issues

- Reliability: how do we deal with failures?
- Extensibility: how do we add new features?
- Communication: how do we exchange information?
- Scale: what happens as demands increase?
- Persistence: how do we make information outlast the processes that created it?
- Accounting: who pays the bills and how do we control resource usage?
Why Learn Operating Systems?

- As a user (programmer)
 - Abstractions aren't perfect
- As a developer
 - Lots of new OSs
- A new world
 - No “cloud OS”
 - Back to the 1950s
Lectures Schedule

- Hardware
- Processes
- Threads
- CPU scheduling
- Synchronization
- Deadlocks
- Memory management
- Virtual memory
- Disks
- File systems
- Network
- Security