
Project 4

Project 4
Reliable Streams

Tom Magrino

Slide heritage: Previous TAs→ Krzysztof Ostrowski→ Robert Escriva

Cornell CS 4411, October 19, 2010



Project 4

Announcements

Project 3 due Sunday at 11:59PM.
Project 4 will be due November 3 at 11:59PM.
Web page is being updated frequently; check for
updates.
Email cs4410staff@systems.cs.cornell.edu
for help.



Project 4

1 The 1,000 Foot Picture

2 Project Scope

3 Implementation

4 Concluding Thoughts (Grading)



Project 4

The 1,000 Foot Picture

What we’re looking for

Implementing TCP is non-trivial; instead, we’ve loosely
specified a reliable stream protocol.

This protocol should co-exist with minimsg.



Project 4

The 1,000 Foot Picture

What is “reliable”?

Guarantee that if a packet is acknowledged (ACKed),
it was delivered.
Allows the user to know that there was a failure.
Packets delivered at least once (not lost in the
network).
Packets delivered at most once (no duplicates).
Guarantees are not absolute; it is sufficient to just
detect errors.



Project 4

The 1,000 Foot Picture

What is “reliable”?

Guarantee that if a packet is acknowledged (ACKed),
it was delivered.
Allows the user to know that there was a failure.
Packets delivered at least once (not lost in the
network).
Packets delivered at most once (no duplicates).
Guarantees are not absolute; it is sufficient to just
detect errors.



Project 4

The 1,000 Foot Picture

What is “stream”?

Connection-based (open, close, etc.).
The user on each end should treat messages as a
sequence of bytes.
Message boundaries are an application-level concept.



Project 4

The 1,000 Foot Picture

What is “stream”?

Connection-based (open, close, etc.).
The user on each end should treat messages as a
sequence of bytes.
Message boundaries are an application-level concept.



Project 4

Project Scope

What are does reliable streaming involve?

Ordering: deliver in sequence (FIFO).
Congestion control: a static window size is sufficient.
Stream-like semantics:

User can send blocks of any size; minisockets should
fragment the data.
Can ask to receive an arbitrary amount of data.



Project 4

Project Scope

Relation to Project #3

Unreliable and reliable protocols will co-exist.
Code from Project 3 may be borrowed/reused where
necessary ...
... but your code should be reasonably separate and
isolated.
The same network interrupt will be used to deliver
both minimsg and miniports.
It is up to you to modify the header so that you may
demultiplex the network packets.



Project 4

Project Scope

Base abstractions (both Project 3 and Project 4)

Each protocol has the concept of a port as its
endpoint.
network.h is used by both.
Ports are identified by number.



Project 4

Project Scope

A typical example

1 Server listens for client connections.
2 Client connects by initiating a hand-shake.
3 Hand-shake completes.
4 Client and server can send data in any direction.
5 Client/server may explicitly close the connection.
6 No send or receive will succeed after a close.
7 Socket is destroyed at the end of communication; that

is, a new socket must be created to repeat this
process.



Project 4

Project Scope

Reliability

At least once:
Delivery confirmation: acknowledgement for every packet
received (ACK).
Retransmission: failure to receive an ACK triggers a
retransmission after timeout.

At most once:
Delivery confirmation: acknowledgement for every packet
received (ACK).
Retransmission: failure to receive an ACK triggers a
retransmission after

Control packets should be reliable as well (e.g. if the
network duplicates a request to open a connection,
the user should not see an error).



Project 4

Project Scope

Stream-like semantics

Ordering is achieved by placing sequence numbers in
packets.

Buffering, variable window size, and duplicate suppression
are used in TCP.

Flow control is achieved by dropped packets.
TCP uses a dynamically changing window size that
changes with available bandwidth.

You may make the window size of minisockets equal
to 1.

Significantly simplifies implementation.
Only one data packet is in transit at any given time (very
slow).
Sequence numbers are still necessary to guarantee FIFO.



Project 4

Project Scope

Fragmentation

Cut the data into arbitrarily sized pieces.
Assume that the sending application’s boundaries are
meaningless.
Don’t put “reassembling” information into the packets.
Receiver will order the packets (by sequence number)
and present it to the user as a continuous (potentially
infinite) stream of bytes.



Project 4

Project Scope

Receiving

The receiver specifies an upper bound on the amount
of data to receive.
It is perfectly acceptable (and very common) for
minisockets to provide fewer bytes.
Any unconsumed data must be left for the next
receiver.
Because we are implementing a stream, the exact
amount of returned data does not matter ∗.
Reconstructing messages is up to the client.

∗Except if it exceeds the upper bound.



Project 4

Project Scope

Concurrency

There is a one-to-one correspondence between server
and client ports, but ...

... multiple threads can simultaneously send, and
worse ...
... multiple threads can simultaneously receive.

The threads will need to be queued waiting on the socket.
Independent threads can receive random pieces of data.
It is up to the application to reassemble the pieces returned
from concurrent reads.

All control communication must be performed
concurrent with all other communication.



Project 4

Implementation

Creating a socket

minisocket_t minisocket_server_create(
int port,
minisocket_error *error);

The server is installed on a specific port (this may
fail).
Blocks pending a connection from a client.
Returns a socket connected with a client.
Simplification: one-to-one communication.

Only a single client may connect (further attempts will fail).
Once a client is connected, further connections are not
allowed.



Project 4

Implementation

Connecting to a socket

minisocket_t minisocket_client_create(
network_address_t addr,
int port,
minisocket_error *error);

Connect to minisocket port on host addr.
This may fail for reasons outlined above.
Blocks until a successful connection is established (or
it times out).



Project 4

Implementation

Sending and receiving

int minisocket_send(minisocket_t socket,
minimsg_t msg,
int len,
minisocket_error *error);

int minisocket_receive(minisocket_t socket,
minimsg_t msg,
int max_len,
minisocket_error *error);

These block until the data has been ACKnowledged.



Project 4

Implementation

void minisocket_close(minisocket_t socket);

This should never fail.
This should wait until communication has successfully
ended (or timed out).
All future sends/receives will fail.



Project 4

Implementation

A new header

Observation: Everything we need in the header for
minimsg, we also need for minisocket.
Header(minimsg) ⊂ Header(minisocket)
Can we structure our socket header to take
advantage of our marshalling/unmarshalling from
minimsg?

With care, yes we
can.
Do not mix the
socket header into
the base header. Network

Minimsg Header

Minisocket Header

User Application



Project 4

Implementation

Retransmission

1 Set the initial timeout to occur 100ms after the first
send.

2 Each time the timeout expires, resend the message
and double the timeout interval.

3 After 12.7 seconds (seven timeouts), stop trying to
send and return an error.

4 When a send is acknowledged, or aborted, reset the
timeout value to 100ms.



Project 4

Implementation

Hand-shaking

Client sends OPEN_CONNECTION
Server responds with OPEN_CONNECTION_ACK or
error:
SOCKET_BUSY A client is already connected to this

socket server.
SOCKET_NOSERVER No server is waiting on this port.
Client confirms OPEN_CONNECTION_ACK with its own
ACK.
This is subject to the retransmission scheme.



Project 4

Implementation

Implementation approach

Separate the two modules.
Put common code in a third file.
Demultiplex in the network handler.
Pass control to the right module based on “type”.
Some code will inevitably be duplicated ...
... but, you should work hard to define module
boundaries, and prevent intermingling of code.



Project 4

Implementation

Where to begin?

Think about the process as a state machine:
Server: {waiting for client, client connected, closing socket,
...}
Client: {waiting for connection to establish, ...}
Server/Client: {sending packet, sending ACK, retransmit, ...}

Transitions:
Packet received.
An API function is called.
Retransmit timeout expires.
...



Project 4

Concluding Thoughts (Grading)

Looking for more of a challenge?

Add a static window size > 1 to your implementation.
Read about TCP’s congestion control algorithm.
Describe (or implement) the changes necessary to
use this algorithm with minisockets.
Demonstrate that your implementation is not subject
to ACK-spoofing or DupACK attacks.



Project 4

Concluding Thoughts (Grading)

Moving forward

There is lots to do on this project.
Start early (this is not a single-weekend project).
Ask if you are not sure.

Even better: Research how the problem you describe is
handled in TCP; come to us with a proposed solution
in-hand.

Come to office hours.


	The 1,000 Foot Picture
	Project Scope
	Implementation
	Concluding Thoughts (Grading)

