
Project 3

Project 3
Unreliable Datagrams

Robert Escriva

Slide heritage: Previous TAs→ Krzysztof Ostrowski

Cornell CS 4411, September 27, 2010



Project 3

Announcements

Project 2 due Wednesday at 11:59PM.
Project 1 will be returned (with feedback) before then.
Web page is being updated frequently; check for
updates.
Email cs4410staff@systems.cs.cornell.edu
for help.



Project 3

The real hero of programming is the one who
writes negative code.

Douglas McIlroy, Cornell ’54



Project 3

1 Project Scope

2 Implementation details
Using the networking pseudo-device
Interrupts
Miniports

An Example

3 Concluding Thoughts (Grading)



Project 3

Project Scope

What are do unreliable datagrams involve?

Simulate (parts of) UDP/IP
Build a datagram networking stack.
Use the pseudo-network interface network.h for
“IP”.
Using ports to identify endpoints.
A minimessage layer for thread I/O.



Project 3

Project Scope

The Interface

void minimsg_initialize();
miniport_t miniport_local_create();
miniport_t miniport_remote_create(

network_address_t addr, int id);
void miniport_destroy(miniport_t miniport);
int minimsg_send(miniport_t local,

miniport_t remote,
minimsg_t msg, int len);

int minimsg_receive(miniport_t local,
miniport_t* remote,
minimsg_t msg, int *len);



Project 3

Implementation details

Using the networking pseudo-device

Overview

The networking device should be treated as the IP layer of
your system.

It transparently enables communication between other
systems running minithreads.

network5.c

network6.c



Project 3

Implementation details

Interrupts

Networking is interrupt-driven

network_initialize() installs the handler.
Should be initialized after clock_initialize and
before interrupts.
The prototype/behavior is similar to the clock
interrupt.
Each packet triggers an interrupt.
Interrupts are delivered on the current thread’s stack.
This should finish as soon as possible!



Project 3

Implementation details

Interrupts

network_handler

typedef struct {
// sender
network_address_t addr;
// hdr+data
char buffer[MAX_NETWORK_PKT_SIZE];
// size
int size;

} network_interrupt_arg_t;

The header and the data are joined in the buffer; you
must strip it off.



Project 3

Implementation details

Interrupts

Networking Functions

int network_send_pkt(
network_address_t dest_address,
int hdr_len, char* hdr,
int data_len, char* data);

Header contains information about the sender and
receiver.
As small as possible



Project 3

Implementation details

Miniports

Overview

A miniport is a datastructure that represents an endpoint.
Local ports are unbound ports; they may be used for
listening and can receive from any remote port.
Remote ports are bound ports; they make replies
possible.



Project 3

Implementation details

Miniports

A sends from port 1 to port 3

Local Ports: 1, 3
Remote Ports: 2
Threads: A, B

Sender Receiver

A B

2

1

3



Project 3

Implementation details

Miniports

Minithreads creates port 100 and delivers message

The port 100 is created in order to allow B to respond.
The message is delivered to local 3.
B is unblocked.

Sender Receiver

A B

2

1

3

100



Project 3

Implementation details

Miniports

B responds to A over the new remote port.

B received a reference to port 100.
B can send to 100.
The message will be sent to 1 (A).

Sender Receiver

A B

2

1

3

100



Project 3

Implementation details

Miniports

What does the datastructure look like?

Conceptually it looks like this∗:

struct miniport {
char port type;
int port number;

queue_t data;
semaphore_t lock;
semaphore_t ready;

network_address_t remote_addr;
int remote_port;
int remote_is_local;

}
∗the next slide should be referenced when implementing



Project 3

Implementation details

Miniports

You should use unions

Unions store two overlapping datastructures†.

union {
struct {

queue_t data;
semaphore_t lock;
semaphore_t ready;

} loc;
struct {

network_address_t addr;
int portno;

} rem;
} u;

†You should use this to replace the last 6 variables from the struct on the
previous page



Project 3

Implementation details

Miniports

Implementation hints - Local communication

miniport_destroy will be called by the receiver.
miniport_send sends data to the “remote port”.
Remote ports can refer to a local port.



Project 3

Implementation details

Miniports

Implementation hints - Miniports

Identified by a 16-bit unsigned number (the actual
datatype is bigger).
Assign successive numbers (even if the port closes).
Local miniports are 0-32767.
Remote miniports are 32768-65535.



Project 3

Implementation details

Miniports

Minimsg Layer

The sender assembles a header that identifies the
end points of communication.
The receiver parses the header to identify the
destination, enqueue the packet, and wake up any
sleeping threads.



Project 3

Implementation details

Miniports

Minimsg Functions

int minimsg_send(miniport_t local,
miniport_t remote,
minimsg_t msg, int len);

Non-blocking (i.e. doesn’t wait for the send to
succeed).
Sends data using network_send_pkt().

int minimsg_receive(miniport_t local,
miniport_t* remote,
minimsg_t msg, int *len);

Blocks until a message is received.
Provides remote port so a reply may be sent.



Project 3

Concluding Thoughts (Grading)

Grading

Include the address of the sender in the header (used
in Project 5).
Port operations must be O(1).
Do not waste resources.
Make sure to not reassign ports that are in-use.
The application destroys remote miniports.
We will be grading you on your implementation and
test cases.


	Project Scope
	Implementation details
	Using the networking pseudo-device
	Interrupts
	Miniports

	Concluding Thoughts (Grading)

