Project 3

Project 3

Unreliable Datagrams

Robert Escriva

Slide heritage: Previous TAs — Krzysztof Ostrowski

Cornell CS 4411, September 27, 2010



Project 3

Announcements

m Project 2 due Wednesday at 11:59PM.

m Project 1 will be returned (with feedback) before then.

m Web page is being updated frequently; check for
updates.

m Email cs4410staff@systems.cs.cornell.edu
for help.



Project 3

The real hero of programming is the one who
writes negative code.

Douglas Mcliroy, Cornell '54



Project 3

Project Scope

Implementation details
m Using the networking pseudo-device
m Interrupts

m Miniports
= An Example

Concluding Thoughts (Grading)



Project 3

L Project Scope

What are do unreliable datagrams involve?

m Simulate (parts of) UDP/IP

m Build a datagram networking stack.

m Use the pseudo-network interface network . h for
“IP”.

m Using ports to identify endpoints.

m A minimessage layer for thread 1/O.



Project 3

L Project Scope

The Interface

void minimsg_initialize();
miniport_t miniport_local_create();
miniport_t miniport_remote_create (
network_address_t addr, int id);
void miniport_destroy (miniport_t miniport);
int minimsg_send (miniport_t local,
miniport_t remote,
minimsg_t msg, int len);
int minimsg_receive (miniport_t local,
miniport_tx remote,
minimsg_t msg, int xlen);



Project 3
L Implementation details

LUsing the networking pseudo-device

Overview

The networking device should be treated as the IP layer of
your system.

It transparently enables communication between other
systems running minithreads.

B networkb.c

B network6.c



Project 3
L Implementation details

L Interrupts

Networking is interrupt-driven

B network_initialize () installs the handler.

m Should be initialized after clock _initialize and
before interrupts.

m The prototype/behavior is similar to the clock
interrupt.

m Each packet triggers an interrupt.
m Interrupts are delivered on the current thread’s stack.
m This should finish as soon as possible!



Project 3
L Implementation details

L Interrupts

network handler

typedef struct {
// sender
network_address_t addr;
// hdr+data
char buffer [MAX_NETWORK_PKT_SIZE];
// size
int size;
} network_interrupt_arg_t;

The header and the data are joined in the buffer; you
must strip it off.



Project 3
L Implementation details

L Interrupts

Networking Functions

int network_send_pkt (
network_address_t dest_address,
int hdr_len, char* hdr,
int data_len, charx data);

m Header contains information about the sender and
receiver.

m As small as possible



Project 3
L Implementation details
L Miniports

Overview

A miniport is a datastructure that represents an endpoint.
m Local ports are unbound ports; they may be used for
listening and can receive from any remote port.
m Remote ports are bound ports; they make replies
possible.



Project 3
L Implementation details
L Miniports

A sends from port 1 to port 3

m Local Ports: 1, 3
m Remote Ports: 2
m Threads: A, B

Sender Receiver




Project 3
L Implementation details
L Miniports

Minithreads creates port 100 and delivers message

m The port 100 is created in order to allow B to respond.
m The message is delivered to local 3.

m B is unblocked.
B I\
[1] 100

Sender Receiver




Project 3
L Implementation details
L Miniports

B responds to A over the new remote port.

m B received a reference to port 100.
m B can send to 100.
m The message will be sentto 1 (A).

‘ <\‘

Sender Receiver




Project 3
L Implementation details
L Miniports

What does the datastructure look like?

Conceptually it looks like this*:

struct miniport {
char port type;
int port number;

queue_t data;
semaphore_t lock;
semaphore_t ready;

network_address_t remote_addr;
int remote_port;
int remote_is_local;

*the next slide should be referenced when implementing



Project 3
L Implementation details
L Miniports

You should use unions

Unions store two overlapping datastructures?.

union {
struct {
queue_t data;
semaphore_t lock;
semaphore_t ready;
} loc;
struct {
network_address_t addr;
int portno;
} rem;
}ou;

TYou should use this to replace the last 6 variables from the struct on the
previous page



Project 3
L Implementation details
L Miniports

Implementation hints - Local communication

B miniport_destroy Will be called by the receiver.
B miniport_send sends data to the “remote port”.
m Remote ports can refer to a local port.



Project 3
L Implementation details
L Miniports

Implementation hints - Miniports

m Identified by a 16-bit unsigned number (the actual
datatype is bigger).

m Assign successive numbers (even if the port closes).
m Local miniports are 0-32767.
m Remote miniports are 32768-65535.



Project 3
L Implementation details
L Miniports

Minimsg Layer

m The sender assembles a header that identifies the
end points of communication.

m The receiver parses the header to identify the
destination, enqueue the packet, and wake up any
sleeping threads.



Project 3
L Implementation details
L Miniports

Minimsg Functions

int minimsg_send (miniport_t local,
miniport_t remote,
minimsg_t msg, int len);

m Non-blocking (i.e. doesn’t wait for the send to
succeed).

m Sends data using network_send_pkt ().

int minimsg_receive (miniport_t local,
miniport_tx remote,
minimsg_t msg, int =xlen);

m Blocks until a message is received.
m Provides remote port so a reply may be sent.



Project 3
LConcluding Thoughts (Grading)

Grading

m Include the address of the sender in the header (used
in Project 5).

m Port operations must be O(1).

m Do not waste resources.

m Make sure to not reassign ports that are in-use.

m The application destroys remote miniports.

m We will be grading you on your implementation and
test cases.



	Project Scope
	Implementation details
	Using the networking pseudo-device
	Interrupts
	Miniports

	Concluding Thoughts (Grading)

