Joe Mongeluzzi

Jason Zhao
Cornell CS 4411, October 12, 2012



Project 2

Today’s Lecture

= Administrative Information

= Common mistakes on Project 2

" Project 3 FAQ

= Discussion



Project 2

" Project 2 is being graded

= See a TAif you need help fixing up your P2
before working on P3

" Project 3 deadline is October 19th, 11:59 PM.



Project 2

Same semaphore used both with and without
interrupts disabled (e.g. clean semaphore)

Interrupt handler decreases alarm count for all
alarms

Only one alarm fired per clock interrupt, even if
multiple are ready

Sleep not implemented using semaphore

A thread should run again immediately if it is the
only thread of its level and it yields (and the level
to schedule from hasn’'t changed)

Memory leaks: sleep semaphores, alarm structs



Project 2

= Having a common header format will be fun later on.

= Use the pack and unpack functions that we provide.

= Do not use a simple byte copy of the network address, this
IS incorrect.

" Port numbers may be stored as ints in your program but
must be converted to unsigned shorts when packing.

" Reminder: do not pack port numbers as ints!
"= The protocol field will be useful in the next project.

= Set the protocol char field to
PROTOCOL_MINIDATAGRAM for this project.



Project 2

= Given the header specs:

= Allocate a (1+8+2+8+2) byte buffer and manually fill in

1 byte protocol type

8 bytes source address

2 bytes source port

8 bytes destination address
2 bytes source port

the contents.

char* header = (char*) malloc(sizeof (protocol type) +
sizeof (source address) + sizeof (source port)
+...);

memcpy (header, &protocol type, sizeof (protocol type));
memcpy (header + sizeof (protocol type), &source_ address,
sizeof (source_address)) ;




Project 2

" Tedious to code.

= Lots of memcpy() and sizeof() operations.
= Code looks ugly.

= What if the header specs change later?
= Must manually change all offsets.



Project 2

= |dea: use a struct to store all fields so they are arranged

correctly in memory.

= Compiler arranges a contiguous block of memory for the struct.
= Memory layout of the struct follows the order declared by the

struct.

struct header

{
char protocol type;

network address t source_ address;
unsigned short source port;

network address t destination address;
unsigned short destination port;

};

struct header hdr;
network send pkt((char*) &hdr, sizeof (hdr),

-.)




Project 2

* Padding!
= Computers usually load in units of words.

= |f a multibyte variable spans 2 words, then 2 loads are
needed.

= Align the variable to some word boundary so it
requires exactly 1 load.
= Padding is unpredictable and is a waste of
resources to transmit.



Project 2

" |dea: Use a struct that cannot possibly have padding.
= Chars require exactly 1 load no matter where they are located.
= Therefore consecutive char fields in a struct are not padded.
= Works regardless of compiler options for padding.

struct header
{
char protocol type;
char source address[8];
char source port[2];
char destination_address([8];
char destination port[2];

};

struct header hdr;
network send pkt((char*) &hdr, sizeof (hdr),

..)

= Use packing functions to convert and populate the char

arrays.




Project 2

= Use an array for your ports.

= O(1) time when using unbound ports (since user
specifies the port he wants).

= O(1) time when creating bound ports before a
wraparound; O(n) time afterwards is acceptable
(since you need to check each port).

= Use semaphore P and semaphore V for
blocking and unblocking threads.

= Remember how we did this in project 2; consider
places where you need to disable interrupts.



Project 2

" Reuse your queue implementation.
= This is useful for storing data in FIFO order.

" Perform sanity checks.
"= |s the protocol type correct?
= Are you sure the received packet is meant for you?

= |s the packet malformed (header too short, invalid port
numbers, etc)?



Project 2

= Consider semantics for unused ports.

= Data sent to unused ports should not actually be
transmitted.

= Data received on an unused port should not be
queued.

= Consider reuse semantics for unbound ports.

" When an unbound port is destroyed and later re-
created, any prior queued data should no longer be
there.

= Don't forget to reset the counting semaphore too.



Project 2

" You may assume the specified port ranges will
not change
= No magic numbers, use #define

®= Dynamic memory responsibilities.

" Network interrupt handler passes you an
network_interrupt_arg t, which you have to eventually
free.

" The user-supplied buffer for both minimsg_send and
minimsg_receive should not be freed by you.



Project 2

= Mutexes and semaphores for unbound ports.

" You will need a counting semaphore.
= But you won’t need a mutex. (Why?)

struct miniport ({
char port type;
int port number;

union {
struct {
queue_t incoming data;
semaphore t datagrams_ ready;
} unbound;

struct {
network address t remote_ address;
int remote unbound port;

} bound;



Project 2

= QOccasional lost packets across machines.
" This is normal.
" Try re-executing your program again.
" Unable to communicate between two machines.
® Make sure both machines can ping each other.
= Try running on two machines in the CSUG lab.
= Redrover is known to have problems with machine
visibility.
" TAs will set up their solutions to test against in
office hours this week.



Project 2

Questions

Questions?



