
Project 2

Project 3
Supplemental Lecture

Joe Mongeluzzi
Jason Zhao

Cornell CS 4411, October 12, 2012

Project 2

Today’s Lecture

  Administrative Information

  Common mistakes on Project 2

  Project 3 FAQ

  Discussion

Project 2

Administrative Information

  Project 2 is being graded

  See a TA if you need help fixing up your P2
before working on P3

  Project 3 deadline is October 19th, 11:59 PM.

Project 2

Project 2 Common Errors

  Same semaphore used both with and without
interrupts disabled (e.g. clean semaphore)

  Interrupt handler decreases alarm count for all
alarms

  Only one alarm fired per clock interrupt, even if
multiple are ready

  Sleep not implemented using semaphore
  A thread should run again immediately if it is the

only thread of its level and it yields (and the level
to schedule from hasn’t changed)

 Memory leaks: sleep semaphores, alarm structs

Project 2

Network header generation

  Having a common header format will be fun later on.
  Use the pack and unpack functions that we provide.

  Do not use a simple byte copy of the network address, this
is incorrect.

  Port numbers may be stored as ints in your program but
must be converted to unsigned shorts when packing.

  Reminder: do not pack port numbers as ints!
  The protocol field will be useful in the next project.

  Set the protocol char field to
PROTOCOL_MINIDATAGRAM for this project.

Project 2

Network header generation – the incorrect way

  Given the header specs:
  1 byte protocol type
  8 bytes source address
  2 bytes source port
  8 bytes destination address
  2 bytes source port

  Allocate a (1+8+2+8+2) byte buffer and manually fill in
the contents.

char* header = (char*) malloc(sizeof(protocol_type) +
 sizeof(source_address) + sizeof(source_port)
 +...);

memcpy(header, &protocol_type, sizeof(protocol_type));
memcpy(header + sizeof(protocol_type), &source_address,

 sizeof(source_address));

Project 2

Why is this a bad idea?

  Tedious to code.
  Lots of memcpy() and sizeof() operations.
  Code looks ugly.

 What if the header specs change later?
 Must manually change all offsets.

Project 2

Iteration #2

  Idea: use a struct to store all fields so they are arranged
correctly in memory.
  Compiler arranges a contiguous block of memory for the struct.
  Memory layout of the struct follows the order declared by the

struct.

struct header
{
 char protocol_type;
 network_address_t source_address;
 unsigned short source_port;
 network_address_t destination_address;
 unsigned short destination_port;
};

struct header hdr;
network_send_pkt((char*) &hdr, sizeof(hdr), ...);

Project 2

Iteration #2: Close but not quite…

  Padding!
  Computers usually load in units of words.

  If a multibyte variable spans 2 words, then 2 loads are
needed.

  Align the variable to some word boundary so it
requires exactly 1 load.

  Padding is unpredictable and is a waste of
resources to transmit.

Project 2

Iteration #3
  Idea: Use a struct that cannot possibly have padding.

  Chars require exactly 1 load no matter where they are located.
  Therefore consecutive char fields in a struct are not padded.
  Works regardless of compiler options for padding.

  Use packing functions to convert and populate the char
arrays.

struct header
{
 char protocol_type;
 char source_address[8];
 char source_port[2];
 char destination_address[8];
 char destination_port[2];
};

struct header hdr;
network_send_pkt((char*) &hdr, sizeof(hdr), ...);

Project 2

Implementation Hints

  Use an array for your ports.
 O(1) time when using unbound ports (since user

specifies the port he wants).
 O(1) time when creating bound ports before a

wraparound; O(n) time afterwards is acceptable
(since you need to check each port).

  Use semaphore_P and semaphore_V for
blocking and unblocking threads.
  Remember how we did this in project 2; consider

places where you need to disable interrupts.

Project 2

Implementation Hints

  Reuse your queue implementation.
  This is useful for storing data in FIFO order.

  Perform sanity checks.
  Is the protocol type correct?
  Are you sure the received packet is meant for you?
  Is the packet malformed (header too short, invalid port

numbers, etc)?

Project 2

Implementation Hints

  Consider semantics for unused ports.
  Data sent to unused ports should not actually be

transmitted.
  Data received on an unused port should not be

queued.

  Consider reuse semantics for unbound ports.
 When an unbound port is destroyed and later re-

created, any prior queued data should no longer be
there.

  Don’t forget to reset the counting semaphore too.

Project 2

Project 3 FAQ

  You may assume the specified port ranges will
not change
  No magic numbers, use #define

  Dynamic memory responsibilities.
  Network interrupt handler passes you an

network_interrupt_arg_t, which you have to eventually
free.

  The user-supplied buffer for both minimsg_send and
minimsg_receive should not be freed by you.

Project 2

Project 3 FAQ

 Mutexes and semaphores for unbound ports.
  You will need a counting semaphore.
  But you won’t need a mutex. (Why?)

struct miniport {
 char port_type;
 int port_number;

 union {
 struct {
 queue_t incoming_data;
 semaphore_t datagrams_ready;
 } unbound;

 struct {
 network_address_t remote_address;
 int remote_unbound_port;
 } bound;
};

Project 2

Testing

  Occasional lost packets across machines.
  This is normal.
  Try re-executing your program again.

  Unable to communicate between two machines.
 Make sure both machines can ping each other.
  Try running on two machines in the CSUG lab.
  Redrover is known to have problems with machine

visibility.
  TAs will set up their solutions to test against in

office hours this week.

Project 2

Questions?

Questions

