
Project 2

Project 2
Adding Preemption

Tom Magrino

Slide heritage: Previous TAs→ Krzysztof Ostrowski→ Robert Escriva

Cornell CS 4411, September 21, 2012



Project 2

Announcements

Project 1 due Sunday at 11:59PM.
Project 2 one week from Sunday at 11:59PM.
Email cs4410staff@systems.cs.cornell.edu
for help.



Project 2

1 Project Scope

2 Implementation details
Interrupts
Adding synchronization
More on interrupts
Alarms
Sleeping with timeout
Multilevel Scheduling

3 Concluding Thoughts (Grading)



Project 2

Project Scope

What are does adding preemption involve?

1 Make your code threadsafe.
2 Install the interrupt handler.
3 ???
4 Profit!∗

∗Profit will come in the form of grades



Project 2

Project Scope

Deliverables

Add preemption to your scheduler.
You will use clock interrupts for preemption.
All code you wrote before must be made (mini)thread-safe.

Alarms; sleeping with a timeout.
Multilevel feedback scheduling policy.

Assign priorities to threads.
Round-robin between threads of the same priority.
Scheduler will change thread priority based on feedback
from thread behavior.



Project 2

Project Scope

Implementation plan

1 Start receiving clock interrupts.
Register interrupt handler.
Start measuring time in ticks.

2 Add preemption.
Synchronize access to global structures.

Interrupts may come at any time.
Our synchronization method of choice: disabling interrupts. †

Switch threads in the interrupt handler.

†You only really need to disable interrupts in minithread.c



Project 2

Project Scope

Implementation plan

3 Add alarms.
Create software structure(s) to track pending alarms.
Use the software clock to measure elapsed time.
Start firing alarms from the clock interrupt handler.

4 Add sleeping.

minithread_sleep_with_timeout(int delay);

Register alarms, block/unblock threads.



Project 2

Project Scope

Implementation plan

5 Add multi-level feedback scheduling.
Implement multilevel feedback queues.

Use a regular queue as the underlying structure.
Add a cyclic search for dequeue.

Extend your scheduler to use the new policy.
Switch to the new data structure.
Cycle through all four levels (to avoid starvation).
Add feedback and move threads between levels.



Project 2

Implementation details

Interrupts

Interacting with Interrupts

Definitions:

typedef void (*interrupt_handler_t)
(void *);

void minithread_clock_init(
interrupt_handler_t clock_handler);

Sample clock handler:

void clock_handler(void* arg) {
/* Handle timer interrupt here */

}



Project 2

Implementation details

Interrupts

Writing an Interrupt Handler

The interrupt handler is interruptible!
You should disable interrupts (temporarily) while in
the handler.
Interrupt handlers should be fast:

System functions, printf, etc. are all too expensive.
You definitely

CANNOT BLOCK!.



Project 2

Implementation details

Interrupts

Enabling/Disabling Interrupts

Definitions for changing interrupts:

typedef int interrupt_level_t;
#define ENABLED 1;
#define DISABLED 0;
interrupt_level_t set_interrupt_level(

interrupt_level_t newlevel);

Strongly recommended usage:

interrupt_level_t oldlevel =
set_interrupt_level(DISABLED)

do_something();
set_interrupt_level(oldlevel);



Project 2

Implementation details

Interrupts

Keeping Time

Change the PERIOD in interrupts.h:

#define SECOND 1000000
#define MILLISECOND 1000
#define PERIOD (100*MILLISECOND)

Measuring elapsed time
System functions are way too slow.
Software clock: just count interrupts.

extern long ticks;



Project 2

Implementation details

Interrupts

How are interrupts processed?

Always execute in the context of a thread...
... that happened to be running when the interrupt
was triggered.
The process of an interrupt:

Current state is saved on the stack of the running thread.
Handler is called.
After the handler completes, the saved state is restored.



Project 2

Implementation details

Interrupts

Interrupts and System Calls

Windows’ system libraries are not (mini)thread-safe...
... so interrupts are disabled (underneath, not by you)
while the process is inside system calls.
What happens if e.g. a thread spends a lot of time
printing to the screen?

Most interrupts are missed.
Scheduler cannot promptly switch between processes.
Software clock drifts; alarms don’t fire on time.



Project 2

Implementation details

Adding synchronization

Why the need to synchronize?

Clock interrupts may arrive at any (unprotected) place
in your code.
Any thread may be preempted while reading/writing
the scheduler’s data-structures.
Multiple threads could concurrently try accessing the
same structures.
The clock handler needs to access the same global
structures (so that it may preempt threads).



Project 2

Implementation details

Adding synchronization

Synchronization Strategies

What not to use: spin locks
Cannot use with interrupts disabled.

Active waiting is time consuming.
If we’re consuming processor time, who will unlock the lock?

What to use: disabling interrupts
Works well on uniprocessors.
Critical sections must be short (interrupts should not be
disabled for long).
Disabling interrupts unnecessarily will be penalized.
Follow the recommended pattern of usage.



Project 2

Implementation details

More on interrupts

Information so important that it has its own section

Unmatched enabling/disabling.
Your function could be called with interrupts disabled
(enabling them would compromise your system’s safety).
Application code should never run with interrupts disabled.

Disabling interrupts unnecessarily.
You should use better synchronization methods outside
minithreads.c

Disabling interrupts for too long.



Project 2

Implementation details

Alarms

Implementing Alarms

What you need to implement:

int register_alarm(
int delay,
void (*func)(void *),
void* arg);

void deregister_alarm(int alarmid);

What you need behind the scenes:
Some structure to keep information about registered
alarms.‡
Code in the interrupt handler to fire alarms.

Use ticks to calculate elapsed time.

‡We do not recommend using queues from project 1.



Project 2

Implementation details

Alarms

Using Alarms

Alarms are fired in the interrupt handler.
Interrupts are disabled in the interrupt handler.
You cannot spend much time in your callback.
You cannot block.

Alarm handler is called in the context of the currently
executing thread...

... which is likely to be different from the thread that
registered the alarm.



Project 2

Implementation details

Sleeping with timeout

Implementing thread sleeping

What you need to implement:

void minithread_sleep_with_timeout(
int delay);

Expected behavior:
Block the caller (and relinquish the CPU).
The caller should not be on the ready queue.
Wake up the thread after the timeout expires.
Make the thread runnable (on the ready queue); a context
switch is unnecessary.



Project 2

Implementation details

Sleeping with timeout

Behind the scenes

You should use the alarm functions.
You should use semaphores instead of
minithread_start() and minithread_stop()

This is more-modular structure.
Avoid race conditions§:

Side effects of this function should be atomic.

§It’s good practice to spot the race condition



Project 2

Implementation details

Multilevel Scheduling

Multilevel Queue Prototypes

typedef struct multilevel_queue*
multilevel_queue_t;

multilevel_queue_t multilevel_queue_new(
int number_of_levels);

int multilevel_queue_enqueue(
multilevel_queue_t queue,
int level, any_t item);

int multilevel_queue_dequeue(
multilevel_queue_t queue,
int level, any_t *item);

int multilevel_queue_free(
multilevel_queue_t queue);



Project 2

Implementation details

Multilevel Scheduling

MLQ Structure



Project 2

Implementation details

Multilevel Scheduling

Scheduling Policy

Cycle through all four levels (moving the starting point
for a dequeue).
After a given number of quanta, move to the next
level.
Spend 80 / 40 / 24 / 16 quanta in levels 0 to 3,
respectively.
Assign 1 / 2 / 4 / 8 quanta at a time to levels 0 to 3,
respectively.
If there are no threads to schedule for a level, look in
the following levels.
Schedule in round-robin fashion within a level.



Project 2

Implementation details

Multilevel Scheduling

Thread Priorities

Extend the TCB to keep a thread’s priority.
A thread’s priority determines which queue (0-3) a
thread goes into.

A thread’s queue determines the size/frequency of a
thread’s allocated run time.

A thread starts at the highest priority.
Priorities decrease over time.

A thread receives lower priority when it outruns its quanta.



Project 2

Implementation details

Multilevel Scheduling

Changing priorities

Change the thread’s priority (in the TCB).
Re-evaluate priority on context switch.

Leave the priority unchanged
When a thread is blocking (stop/semaphores).
When a thread is yielding.

Lower the priority (until it hits bottom)
When a thread is preempted.

Priorities are never raised.
Any other reasonable policies?



Project 2

Concluding Thoughts (Grading)

Grading

Correctness
Avoid race conditions.
Use interrupts correctly.
Do not leak memory.

Efficiency
Interrupts should be disabled for short periods of time.
Don’t disable interrupts unnecessarily.
Interrupt handler processing should be fast.
Schedule the idle thread only when there is nothing more to
schedule.
Use semaphores where possible.

Elegance
Your code should be modular and easy to understand.



Project 2

Concluding Thoughts (Grading)

Advice

Start early.
Work incrementally.
Test thoroughly.


	Project Scope
	Implementation details
	Interrupts
	Adding synchronization
	More on interrupts
	Alarms
	Sleeping with timeout
	Multilevel Scheduling

	Concluding Thoughts (Grading)

