Networking:
Application Layer

Summer 2011
Cornell University
Today

- DNS
- End-to-End Argument
When a user wants to communicate with a remote node, is it easier to remember 69.63.176.13 or www.facebook.com?

Human-friendly names are given to nodes.

Simultaneously, a translation mechanism should exist between names and IP addresses.
 * Packets need IP addresses to be transmitted.

Will we use arbitrary or well-structured names? Why?
 * It affects the efficiency of the translation mechanism.

Nowadays, we use Domain Names.
 * Well-structured strings.
 * Multiple labels separated by dots.
 * They create a hierarchical Domain Name Space.

Use:
 * Emails, web sites
Hierarchical Domain Space

- Every domain name should belong to this tree.

When a process wants to send data to www.facebook.com, somebody needs to provide the IP translation. Who?

Domain Name Service
DNS

- Can we have only one server in the network which would provide the translations of all domain names? Why?
- DNS uses multiple DNS resolvers (servers) in the network and the translations are distributed among them. How?
- Each DNS resolver is responsible for a subset of the Domain Name space.
DNS

• Example:
 • Suppose we want to access www.cs.cornell.edu.
 • First, the DNS resolver in the OS contacts root DNS server and asks if it knows the translation of www.cs.cornell.edu.
 • The root does not know the translation, but it knows the DNS server that is responsible for .edu addresses. Thus, it forwards the request there.
 • The DNS server for .edu does not know the translation, but it knows the DNS server responsible for the cornell.edu addresses. Thus, it forwards the request there.
 • The DNS server for cornell.edu does not know the translation, but it knows the DNS server responsible for the cs.cornell.edu addresses. Thus, it forwards the request there.
 • Finally, the DNS server for cs.cornell.edu addresses sends the IP address of the website www.cs.cornell.edu.

• Improvement:
 • One or more of these DNS servers may have cached the translation from previous requests, accelerating the DNS query.
End-to-End Argument

• Should the network guarantee packet delivery?
 • Think about a file transfer program
 • Read file from disk, send it, the receiver reads packets and writes them to the disk
• If the network guaranteed packet delivery, one might think that the applications would be simpler
 • No need to worry about retransmits
 • But still need to check that the file was written to the remote disk intact
• A check is necessary if nodes can fail
 • Consequently, applications need to be written to perform their own retransmits
 • No need to burden the internals of the network with properties that can, and must, be implemented at the periphery
End-to-End Argument

• Application-specific properties are best provided by the applications, not the network
 • Guaranteed, or ordered, packet delivery, duplicate suppression, security, etc.

• The Internet performs the simplest packet routing and delivery service it can
 • Packets are sent on a best-effort basis
 • Higher-level applications do the rest