Today

- How the memory is shared among the ready processes?
- Memory
- Address protection
- Logical vs Physical Address
- Contiguous memory allocation
Storage Hierarchy

Hard Disk

Memory

Cache (L1, L2, L3)

Registers
Memory

- A large array of words.
- Word = 4 or 8 bytes.
- One address for every word.
- Content:
 - Instructions
 - Data
Instruction execution cycle

- Fetch instruction from memory.
 - The PC saves its address.
- Decode instruction.
- Fetch operands form memory.
- Execute the instruction.
- Store result in memory.

- Program and data should be in Memory to become useful.
Memory Management

• Is memory shared between processes? How?

• Monoprogramming
 • Only one process is ready and loaded into memory.
 • It shares the memory space with the OS.
 • Is it efficient?

• Multiprogramming
 • Fixed or variable partitions for every ready process.
 • 2 problems: relocation, protection. Solutions?

• Timesharing
 • Swapping
 – Entire process (code, data) is transferred from disk to memory, and vice versa.
 • Virtual Memory
 – Processes can run when they are partially in the memory.
Memory Management

• What about the memory addresses?
 • Monoprogramming
 - The physical addresses are known to the programmer.
 • Multiprogramming
 - The physical addresses are known at the loading time.
 • Timesharing
 - The physical addresses are known at the execution.
 - The CPU understands logical addresses.
 - The Memory understands physical addresses.
Memory Management

• Basic concerns:
 • Allocation
 • Relocation
 • Protection
Hardware address protection

- Multitasking OS
- Multiple processes loaded in the memory.
- Each process has a separate memory space.
- HW+OS are responsible for address protection.
Logical vs Physical Address

- Multitasking OS
- Memory management: Swap, Virtual Memory
- Logical Address
 - Address generated by the CPU
 - Address loaded into PC
 - Address used in a program
- Physical Address
 - Address seen by the memory unit
Address Binding

- Logical → Physical
- Execution time
 - Logical Address ↔ Virtual Address
- Memory-Management Unit (MMU)
 - Hardware device
 - Run-time mapping

![Diagram of address binding](image)
Dynamic Loading

• Using Virtual memory:
• Better memory-space utilization
• The main program is loaded into memory.
• A routing of the program is not loaded until it is called.
• It is users' responsibility.
Dynamic Linking

• Using Virtual memory:

• Without this, each program should include a copy of its language library.

• It waists disk and memory space.

• With Dynamic Linking:
 • A stub substitutes a library-routine reference.
 • When stub is executed:
 – It checks if the routine is in the memory.
 – If not, the program loads the routine.
Contiguous Memory Allocation

- Share memory between OS and multiple processes.
- Each process is contained in a single contiguous section in memory.
- Memory protection:
 - CPU scheduler selects process for execution.
 - The dispatcher loads the relocation and limit registers.

![Diagram of memory allocation process]

1. CPU sends logical address to limit register
2. If logical address < limit, then yes -> physical address
3. If logical address ≥ limit, then no -> trap: addressing error
4. Physical address is loaded into memory

trap: addressing error
Allocation Strategies

- Fixed-sized partitions
 - The degree of multiprogramming is bound by the number of partitions.
- Variable-partition scheme
 - The OS keeps a table indicating which parts of memory are available and which are occupied.
 - The OS tries to fit the memory demands of a process in the available memory space.
- Dynamic storage allocation problem:
 - First fit
 - Best fit
 - Worst fit
Fragmentation

- External fragmentation
 - First-fit, Best fit
 - There is enough total memory space to satisfy a request but the available spaces are small and not contiguous.
 - Solution 1: Break the physical memory into fixed-sized blocks and allocate memory in units based on block size.
 - Internal fragmentation: the allocated memory is slightly larger than the requested memory.
- Solution 2: Compaction
Today

- How the memory is shared among the ready processes?
- Memory
- Address protection
- Logical vs Physical Address
- Contiguous memory allocation