
1

CS 4410
Operating Systems

Deadlocks:
Avoidance – Detection - Recovery

Summer 2011
Cornell University

2

Today
● Can we avoid a deadlock? Can we detect and

recover from a deadlock?
● Safe state
● Deadlock avoidance
● Banker's Algorithm
● Deadlock detection
● Deadlock recovery

3

Deadlock Avoidance

● The system knows the complete sequence of
requests and releases for each process.

● The system decides for each request whether
or not the process should wait in order to avoid
a deadlock.

● Each process declare the maximum number of
resources of each type that it may need.

● The system should always be at a safe state.
● Safe state → no deadlock

● the inverse is not always true.

4

Safe State
● A state is said to be safe, if it has a process sequence

● {P1, P2,…, Pn}, such that for each Pi,
● the resources that Pi can still request can be satisfied by the currently

available resources plus the resources held by all Pj, where j < i.
● State is safe because OS can definitely avoid deadlock

● by blocking any new requests until safe order is executed

● This avoids circular wait condition
● Process waits until safe state is guaranteed

5

Safe State
● Suppose there are 12 tape drives

● 3 drives remain

● Current state is safe because a safe sequence exists: <p1,p0,p2>
● p1 can complete with current resources
● p0 can complete with current+p1
● p2 can complete with current +p1+p0

● If p2 requests 1 drive, then it must wait to avoid unsafe state.

Max Needs Current Needs
p0 10 5
p1 4 2
p2 9 2

6

Resource-Allocation Graph Algorithm
● Works only if each resource type has one

instance.
● Algorithm:

● Add a claim edge, Pi → Rj, if Pi can request Rj in
the future

● Represented by a dashed line in graph
● A request Pi → Rj can be granted only if:

● Adding an assignment edge Rj → Pi does not
introduce cycles

– (since cycles imply unsafe state)

P1 P2

R2

R1

P1 P2

R2

R1

7

Banker's Algorithm
● Applicable to resources with multiple instances.
● Less efficient than the resource-allocation graph scheme.
● Each process declares its needs (number of resources)
● When a process requests a set of resources:

● Will the system be at a safe state after the allocation?
– Yes → Grant the resources to the process.
– No → Block the process until the resources are

released by some other process.

8

Banker's Algorithm
n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i

max[1..n,1..m] max demand of each Pi for each Ri

allocation[1..n,1..m] current allocation of resource Rj to Pi

need[1..n,1..m] max # resource Rj that Pi may still request

9

Banker's Algorithm
● If request[i] > need[i] then

● error (asked for too much)

● If request[i] > available[i] then

● wait (can’t supply it now)

● Resources are available to satisfy the request

● Let’s assume that we satisfy the request. Then we would have:

– available = available - request[i]
– allocation[i] = allocation [i] + request[i]
– need[i] = need [i] - request [i]

● Now, check if this would leave us in a safe state:

– If yes, grant the request,
– If no, then leave the state as is and cause process to wait.

10

Banker's Algorithm
● Safety Algorithm

work[1..m] = available /* how many resources are available */

finish[1..n] = false (for all i) /* none finished yet */

Step 1:

Find an i such that finish[i]=false and need[i] <= work /* find a proc that can complete its request
now */

 If no such i exists, go to step 3 /* we’re done */

Step 2: Found an i:

finish [i] = true /* done with this process */

work = work + allocation [i]

 /* assume this process were to finish, and its allocation back to the
available list */

go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

11

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is a safe state: safe sequence <P1, P3, P4, P2, P0>

● Suppose that P1 requests (1,0,2)
● Add it to P1’s allocation and subtract it from Available.

12

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 2 3 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is still safe: safe seq <P1, P3, P4, P0, P2>
● In this new state,P4 requests (3,3,0)

● Not enough available resources.
● P0 requests (0,2,0)

● Let’s check resulting state...

13

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is unsafe state (why?).
● So P0’s request will be denied.

14

The story so far..
● We saw that you can prevent deadlocks.

● By negating one of the four necessary conditions.
● We saw that the OS can schedule processes in a careful way

so as to avoid deadlocks.
● Using a resource allocation graph.
● Banker’s algorithm.

● What are the downsides to these?

15

Deadlock Detection
● If neither avoidance or prevention is implemented, deadlocks

can (and will) occur.
● Coping with this requires:

● Detection: finding out if deadlock has occurred
– Keep track of resource allocation (who has what)
– Keep track of pending requests (who is waiting for what)

● Recovery: resolve the deadlock

16

Using the RAG Algorithm to detect
deadlocks

● Suppose there is only one instance of each resource
● Example 1: Is this a deadlock?

● P1 has R2 and R3, and is requesting R1
● P2 has R4 and is requesting R3
● P3 has R1 and is requesting R4

● Example 2: Is this a deadlock?
● P1 has R2, and is requesting R1 and R3
● P2 has R4 and is requesting R3
● P3 has R1 and is requesting R4

● Use a wait-for graph:
● Collapse resources
● An edge Pi → Pk exists only if RAG has Pi → Rj & Rj → Pk
● Cycle in wait-for graph → deadlock!

17

Detection Algorithm
● Multiple instances per resource.
● Data structures:

n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i

request[1..n,1..m] current demand of each Pi for each Ri

allocation[1..n,1..m] current allocation of resource Rj to Pi

finish[1..n] true if Pi’s request can be satisfied

Let request[i] be vector of # instances of each resource Pi wants

18

Detection Algorithm
● work[]=available[]

● for all i < n, if allocation[i] != 0

● then finish[i]=false else finish[i]=true
● find an index i such that:

● finish[i]=false;
● request[i]<=work

● if no such i exists, go to 5.

● work=work+allocation[i]

● finish[i] = true, go to 3

● if finish[i] = false for some i,

● then system is deadlocked with Pi in deadlock

19

Detection Algorithm: Example
 Allocation Request Available

 A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

● The system is not in a deadlocked state.
● What will happen if P2 makes an additional request for a instance of type C?

20

Deadlock Recovery
● Killing one/all deadlocked processes

● Keep killing processes, until deadlock broken
● Repeat the entire computation

● Preempt resource/processes until deadlock broken
● Selecting a victim (# resources held, how long executed)
● Rollback (partial or total)
● Starvation (prevent a process from being executed)

21

Today
● Can we avoid a deadlock? Can we detect and

recover from a deadlock?
● Safe state
● Deadlock avoidance
● Banker's Algorithm
● Deadlock detection
● Deadlock recovery

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

