Project 5 Ad-hoc networking

Zhiyuan Teo

Slide heritage: Previous TAs \rightarrow Robert Escriva

Cornell CS 4411, November 11, 2011

Administrative Information

- Projects 2 and 3 have been graded. Use CMS for regrade requests.
- Project 5 will be released this evening. Due date: November 20 at 11:59PM. There will be no extension for this project.
- No supplementary lecture for project 5.
- Next week: Project 6 lecture.

There are three kinds of death in this world. There's heart death, there's brain death, and there's being off the network.

Guy Almes

- 1 Overview
- 2 Project Scope
- 3 Implementation Details
- 4 Testing your project
- 5 Concluding Thoughts

What is an "ad-hoc networking layer"?

What is an "ad-hoc networking layer"?

Ad-hoc networking enables wireless communication without the need for infrastructure.

What is it useful for?

- Removes infrastructure costs.
- Allows quick deployment.
- Potentially more reliable (no single point of failure).

Based on Dynamic Source Routing.*

^{*} http://www.cs.cornell.edu/People/egs/615/johnson-dsr.pdf

What do you mean by routing?

- Packets that arrive at your machine may not be meant for you.
- Packets not meant for you should be routed to their destination.
- Insert a routing layer between the network and transport layer.
- Both minimsg and minisocket implementations should work on top of miniroute.

Our networking stack until now...

Our networking stack after P5

Project Scope

What does this mean for the network headers?

miniroute header minimsg/minisocket header data

Route discovery

- DSR is a reactive protocol.
- If a host does not know how to route a packet, it must discover the route.
 - It does so by sending a route discovery packet.
- A route discovery packet is broadcast to all hosts within proximity of a wireless signal.
- Hosts will re-broadcast discovery packets if they are not the destination.
 - The host will add itself to the constructed route.
- The destination will send a unicast route reply packet along the reverse route.

Route replies

- Upon receiving a reply, the route will be updated into the cache.
- If the received route contains A → B → C where A is the source, C is the destination, C will flip the route to C → B → A to send a reply to host A.
- Route cache entries expire in 3 seconds to prevent stale cache entries.
- Route discovery must be performed again upon route expiration.
 - Is there a better way to do this?

More on DSR

- How does the protocol terminate?
 - By tracking a time-to-live (ttl) value.
 - ttl decrements by 1 each time a message is forwarded.
- Set the initial ttl to MAX_ROUTE_LENGTH.
- What happens when ttl = 0?
- How do we prevent loops while broadcasting?

What do you need to implement?

- Convert calls in higher network layers to network_send_pkt to miniroute_send_pkt.
 - But your miniroute_send_pkt function may still need to depend on network_send_pkt for unicasts.
- Update the network handler.
 - Interpret the miniroute header.
 - Handle routing control packets.
 - Deliver packet as usual if the destination has been reached.[†]

[†]Strip off miniroute header before delivering packet up the network stack.

Routing Cache

- The cache must be able to hold SIZE_OF_ROUTE_CACHE entries.
- Routes are invalidated after a 3 second timeout.
 - Alarms may be used, but it can be done without.
- Access should be somewhat efficient, as you may increase SIZE_OF_ROUTE_CACHE to be large.
 - \blacksquare Aim for O(1) access speed on operations.
 - Use a hash table with linear probing.
 - We have provided a hash function for network addresses.

miniroute send pkt semantics

- Allow only one routing discover request per destination on the network at any one time.
 - Block threads if miniroute_send_pkt() was called and route isn't in the cache.
 - Discoveries for multiple destinations can be done concurrently, but...
 - Multiple threads should not trigger multiple routing discovery requests for the same destination.
 - Unblock all threads waiting on a route when that reply arrives.

Miniroute packets

- Use the header format provided in miniroute.h:
 - Pack fields into the structure.
 - Append minimsg or minisocket messages (if necessary).
 - Maximum overall network packet size is still 8192, so you may have to make adjustments in your P3/P4 code.

Additional implementation requirements

- Write an Instant Messenger application that runs on miniroute.
 - Read input from the user (look at read. [ch]).
 - Add miniterm_initialize to your system initialize functions.
 - miniterm_read will let you read from the keyboard.
- Try running network6.c over miniroute.
 - Test interoperability with your friends.

Trying out your implementation

- Open network.h.
- **Set** BCAST_ENABLED **to 1**.
- **Set** BCAST_ADDRESS:
 - 192.168.1.255 for ad-hoc network (see instructions for setting up an ad-hoc network).
 - x.y.z.255 for CSUGLAB.
- For debugging/testing in the CSUGLAB:
 - **Set** BCAST_TOPOLOGY_FILE.
 - Provide a topology file (see project description).
 - Test without wireless.
 - Use only in CSUGLAB.

If you are really interested in this stuff...

- Hybrid proactive/reactive routing protocols
- See Professor Sirer's SHARP‡

thttp://www.cs.cornell.edu/courses/cs414/2004SP/papers/sharp.pdf

Concluding thoughts

- Have some fun with this project.
- It's much less work than P4.
- Computers in the CSUGLAB may get snapped up by other students near the deadline, so start early.
- Come see the TAs in office hours§.

[§]some of the TAs get lonely