
Getting ready for Project 1

Getting ready for Project 1
Data structures in C

Zhiyuan Teo

Cornell CS 4411, September 2, 2011

Getting ready for Project 1

1 Administrative Information

2 Function Pointers

3 Data structures in C

4 Poor man’s inheritance

5 Typedefs

6 Building an OS Queue

7 The Road Ahead

Getting ready for Project 1

Administrative Information

Administrative Information

Change in office hours
Monday 2.30pm - 4.25pm (Z)
Wednesday 1.25pm - 3.20pm (Ki Suh)

For next week only
Z’s office hours will be moved to Tuesday, 4.10pm - 5.00pm
Venue: 4132 Upson Hall

Project 1 will be released next week.

Getting ready for Project 1

Administrative Information

Administrative Information

Project groups are due by Tuesday, 6 September.
E-mail Z if you have not signed up on paper yet.
Update: individual project weightages will not be
equal.

Getting ready for Project 1

Function Pointers

Function Pointers

Instead of referencing data, references code.
Don’t need to dereference the function pointer to use
it.
When assigning a value to the function pointer, use
the function name directly, don’t prepend the & sign to
it.

Getting ready for Project 1

Function Pointers

Function Pointer example

int inc(int i) { return i + 1; }
int dec(int i) { return i - 1; }

int apply(int (*f)(int), int i)
{

return f(i);
}

int main(int argc, char** argv)
{

printf("++: %i\n", apply(inc, 10));
printf("--: %i\n", apply(dec, 10));
return 0;

}

Getting ready for Project 1

Function Pointers

Dissecting the Function Pointer

Any function that takes an int and returns an int (ie. of
the form int foo(int param)) can be assigned to
f.

Getting ready for Project 1

Data structures in C

Structs

An aggregated set of related variables.
Each variable can be a different data type.
Provides a way to attain OO-like behavior in C.

Getting ready for Project 1

Data structures in C

Internally...

structs have predictable layout.
Each struct is contiguous in memory.
Variables are packed together in the order they are
specified in the definition.

Getting ready for Project 1

Data structures in C

Example

struct coordinates
{

int x;
int y;

};

sizeof(struct coordinates) is 8

Getting ready for Project 1

Data structures in C

Another example

struct telephone_entry
{

char name[15];
short area_code;
int local_number;

};

sizeof(struct telephone_entry) is not 15 + 2
+ 4

Getting ready for Project 1

Data structures in C

Padding

Variables are aligned to certain power-of-2 numbered
boundaries for faster access.
Padding can be controlled through compiler options.
Pad bytes may be non-zero.
Not important to know the rules of padding, just need
to know that padding can occur in structs.

Getting ready for Project 1

Data structures in C

Padding Illustration

Getting ready for Project 1

Poor man’s inheritance

Poor man’s inheritance

structs are contiguous in memory and have
predictable layout.
dissimilar structs with similar initial fields will have
similar initial memory layout.
exploit this fact to create "base classes".

Getting ready for Project 1

Poor man’s inheritance

Example

struct generic_tree_node {
struct generic_tree_node* parent;
struct generic_tree_node* left_child;
struct generic_tree_node* right_child;

};

struct my_tree_node {
struct my_tree_node* parent;
struct my_tree_node* left_child;
struct my_tree_node* right_child;
int node_value;
char* data;

};

Getting ready for Project 1

Poor man’s inheritance

Generic code using "base classes"

void
swap_children(struct generic_tree_node* node)
{

struct generic_tree_node* temp;

temp = node->left_child;
node->left_child = node->right_child;
node->right_child = temp;

}

Cast struct my_tree_node* into struct
generic_tree_node* and call the function.

Getting ready for Project 1

Typedefs

Typedefs

Create an alias for a type.
Syntax: typedef type alias

Use it like any primitive: list_elem_t le;

Useful if you keep forgetting or find it troublesome to
put ‘struct’ or ‘enum’ in front of your types.

typedef struct list_elem
{

int data;
struct list_elem* next;

} list_elem_t;

Getting ready for Project 1

Typedefs

Examples

typedef int *int_ptr;

typedef void *any_t;

typedef struct {
int x;
int y;

} coordinates, *coordinates_ptr;

Getting ready for Project 1

Typedefs

A typedef in use

typedef int *int_ptr;

int main(int argc, char** argv) {
int x = 5;
int_ptr = &x;
printf("value of x is %d\n", *int_ptr);

return 0;
}

Getting ready for Project 1

Building an OS Queue

Building an OS Queue

Build some queue functions that can be reliably used
by your OS.
Your scheduler will depend heavily on these
functions, so performance is important.

Enqueue and dequeue should run in O(1) time.

Getting ready for Project 1

Building an OS Queue

Typical implementation

Singly or doubly linked list can both satisfy O(1).

Getting ready for Project 1

Building an OS Queue

Enqueue operation

To enqueue, allocate a piece of memory, set the
pointers.
Two different cases to consider:

normal case: append list node to the end and update tail
pointer.
boundary case: queue is empty; set head and tail to point
to the same node.

Getting ready for Project 1

Building an OS Queue

Normal case

Getting ready for Project 1

Building an OS Queue

Boundary case

Getting ready for Project 1

Building an OS Queue

Dequeue operation

To dequeue, remove the first list node and free up its
associated memory.
Two different cases to consider:

normal case: update head pointer and new head node.
boundary case 1: queue contains only 1 node; update head
and tail pointers.
boundary case 2: queue is empty, return an error.

Getting ready for Project 1

Building an OS Queue

Normal case

Getting ready for Project 1

Building an OS Queue

Boundary case 1

Getting ready for Project 1

Building an OS Queue

Alternative queue implementation

Motivation: it is not always possible to safely call
allocate in a real OS.

An interrupt may arrive in the middle of a malloc() call.
If the interrupt does queue operations and calls malloc(), a
deadlock could occur.

Have to think of some other way to allow queue
operations without allocating memory.

Getting ready for Project 1

Building an OS Queue

Solution

Make sure queueable objects are augmented with
some extra space.

Use "poor man’s inheritance" to set aside space for the
pointers your queue structure needs.
Perform queue operations by casting queue objects into the
"base class".

Objects not augmented with this extra space cannot
be queued.
Challenge seekers: implement your queue using this
method!

Getting ready for Project 1

The Road Ahead

Project 1

Project 1 will be released next Friday, 9 September.
Topics: scheduling, threads, semaphores (and of
course queues).
Come to class to hear more about it.

	Administrative Information
	Function Pointers
	Data structures in C
	Poor man's inheritance
	Typedefs
	Building an OS Queue
	The Road Ahead

