Getting ready for Project 1

Getting ready for Project 1

Data structures in C

Zhiyuan Teo

Cornell CS 4411, September 2, 2011



Getting ready for Project 1

Administrative Information

.

Function Pointers

N

Data structures in C

B 3

Poor man’s inheritance

&

Typedefs

Building an OS Queue

The Road Ahead

|



Getting ready for Project 1

LAdministrative Information

Administrative Information

m Change in office hours
m Monday 2.30pm - 4.25pm (2)
m Wednesday 1.25pm - 3.20pm (Ki Suh)
m For next week only
m Z’s office hours will be moved to Tuesday, 4.10pm - 5.00pm
m Venue: 4132 Upson Hall

m Project 1 will be released next week.



Getting ready for Project 1

LAdministrative Information

Administrative Information

m Project groups are due by Tuesday, 6 September.
m E-mail Z if you have not signed up on paper yet.

m Update: individual project weightages will not be
equal.



Getting ready for Project 1

L Function Pointers

Function Pointers

m Instead of referencing data, references code.

m Don’t need to dereference the function pointer to use
it.

m When assigning a value to the function pointer, use
the function name directly, don’t prepend the & sign to
it.



Getting ready for Project 1

L Function Pointers

Function Pointer example

int inc(int i) { return i + 1; }
int dec(int i) { return i - 1; }

int apply(int (*f) (int), int 1i)

return f(i);

int main(int argc, char** argv)

printf ("++:_%i\n", apply(inc, 10));
printf ("--:_%1i\n", apply(dec, 10));
return 0;



Getting ready for Project 1

L Function Pointers

Dissecting the Function Pointer

int (*f) (int)

function takes one parameter

of type int
return type of the P

function is int

function pointer will be
henceforth referred to as f’

m Any function that takes an int and returns an int (ie. of
the form int foo (int param)) can be assigned to
f.



Getting ready for Project 1

L Data structures in C

Structs

m An aggregated set of related variables.
m Each variable can be a different data type.
m Provides a way to attain OO-like behavior in C.



Getting ready for Project 1

L Data structures in C

Internally...

m structs have predictable layout.
m Each struct is contiguous in memory.

m Variables are packed together in the order they are
specified in the definition.



Getting ready for Project 1

L Data structures in C

Example

struct coordinates

{
int x;
int vy;

B sizeof (struct coordinates) is8



Getting ready for Project 1

L Data structures in C

Another example

struct telephone_entry
{
char name[15];
short area_code;
int local_number;

i

B sizeof (struct telephone_entry) isnot15 +2
+4



Getting ready for Project 1

L Data structures in C

Padding

m Variables are aligned to certain power-of-2 numbered
boundaries for faster access.

m Padding can be controlled through compiler options.
m Pad bytes may be non-zero.

m Not important to know the rules of padding, just need
to know that padding can occur in structs.



Getting ready for Project 1

L Data structures in C

Padding lllustration

padding (unknown values)

local_number (4 bytes)

—

R ~- 7
name (15 bytes)

area_code (2 bytes)



Getting ready for Project 1

L Poor man'’s inheritance

Poor man’s inheritance

m structs are contiguous in memory and have
predictable layout.

m dissimilar structs with similar initial fields will have
similar initial memory layout.

m exploit this fact to create "base classes".



Getting ready for Project 1

L Poor man'’s inheritance

Example

struct generic_tree_node {
struct generic_tree_nodex parent;
struct generic_tree_nodex left_child;
struct generic_tree_nodex right_child;

};

struct my_tree_node {
struct my_tree_nodex parent;
struct my_tree_nodex left_child;
struct my_tree_nodex right_child;
int node_value;
charx data;

i



Getting ready for Project 1

L Poor man'’s inheritance

Generic code using "base classes"

void

swap_children (struct generic_tree_nodex* node)

{

struct generic_tree_nodex temp;

temp = node->left_child;
node—->left_child =

node->right_child;
node->right_child =

temp;

m Cast struct my_tree_nodex into struct
generic_tree_nodex and call the function.



Getting ready for Project 1
L Typedefs

Typedefs

m Create an alias for a type.
m Syntax: typedef type alias
m Use it like any primitive: 1ist_elem_t le;

m Useful if you keep forgetting or find it troublesome to
put ‘struct’ or ‘enum’ in front of your types.

typedef struct list_elem
{

int data;

struct list_elem* next;
} list_elem_¢t;



Getting ready for Project 1
L Typedefs

Examples

typedef int xint_ptr;
typedef void xany_t;

typedef struct {
int x;
int vy;
} coordinates, =xcoordinates_ptr;



Getting ready for Project 1
L Typedefs

A typedef in use

typedef int xint_ptr;

int main (int argc, charxx argv) {
int x = 5;
int_ptr = &x;
printf ("value_of x_is_%d\n", xint_ptr);

return 0;



Getting ready for Project 1
LBuilding an OS Queue

Building an OS Queue

m Build some queue functions that can be reliably used
by your OS.

m Your scheduler will depend heavily on these
functions, so performance is important.

m Enqueue and dequeue should run in O(1) time.



Getting ready for Project 1
LBuilding an OS Queue

Typical implementation

tail \

head — —

m Singly or doubly linked list can both satisfy O(1).



Getting ready for Project 1
LBuilding an OS Queue

Enqueue operation

m To enqueue, allocate a piece of memory, set the
pointers.
m Two different cases to consider:

m normal case: append list node to the end and update tail
pointer.

m boundary case: queue is empty; set head and tail to point
to the same node.



Getting ready for Project 1
LBuilding an OS Queue

Normal case

tail \

head ———

tail \

head — —




Getting ready for Project 1
LBuilding an OS Queue

Boundary case

taill ——
head ——
tail E—]

head — —




Getting ready for Project 1
LBuilding an OS Queue

Dequeue operation

m To dequeue, remove the first list node and free up its
associated memory.
m Two different cases to consider:

m normal case: update head pointer and new head node.

m boundary case 1: queue contains only 1 node; update head
and tail pointers.

m boundary case 2: queue is empty, return an error.



Getting ready for Project 1
LBuilding an OS Queue

Normal case

tail \

head ——

tail \

head

dequeued item




Getting ready for Project 1
LBuilding an OS Queue

Boundary case 1

tail —-W

head ——

head ———— % dequeued item




Getting ready for Project 1
LBuilding an OS Queue

Alternative queue implementation

m Motivation: it is not always possible to safely call
allocate in a real OS.

m An interrupt may arrive in the middle of a malloc() call.
m If the interrupt does queue operations and calls malloc(), a
deadlock could occur.
m Have to think of some other way to allow queue
operations without allocating memory.



Getting ready for Project 1
LBuilding an OS Queue

Solution

m Make sure queueable objects are augmented with
some extra space.

m Use "poor man’s inheritance" to set aside space for the
pointers your queue structure needs.
m Perform queue operations by casting queue objects into the
"base class".
m Objects not augmented with this extra space cannot
be queued.

m Challenge seekers: implement your queue using this
method!



Getting ready for Project 1
L The Road Ahead

Project 1

m Project 1 will be released next Friday, 9 September.

m Topics: scheduling, threads, semaphores (and of
course queues).

m Come to class to hear more about it.



	Administrative Information
	Function Pointers
	Data structures in C
	Poor man's inheritance
	Typedefs
	Building an OS Queue
	The Road Ahead

