Language Support for
Concurrency

Ken Birman

Java: too many options!

* Semaphores and Mutex variables
¢ Mutex allows exactly one process “past”.

e Semaphore can count: af
+ Mutex is identical to a “bi:
e Locks (just an alias for

We haven’t seen these yet.
Our focus today

© Synchronized objects, or ¢g
* Object.wait(), notify(), notifyall() |

. Bounded Buffer

e Critical sections don’t work well for some common
models of sharing that we would also like to support
* Bounded buffer:
e Arises when two or more threads communicate with
some threads “producing” data that others “consume”.
* Example: preprocessor for a compiler “produces” a
preprocessed source file that the parser of the compiler
“consumes”
© We saw this with the buffer of keyboard characters
(shared between the interrupt handler and the device
driver read procedure) back in lecture 2

2/16/2009

P———

Synchronization paradigms

* We've looked at critical sections

e Really, a form of locking

¢ When one thread will access shared data, first it gets a
kind of lock

e This prevents other threads from accessing that data
until the first one has finished

* We saw that semaphores make it easy to implement
critical sections and can even be used to synchronize
access to a shared buffer

* But semaphores are “ugly”

Monitors

* Today we'll see that there is a “preferred” style of
coding in Java
e Uses “synchronized” and the object wait/notify methods
 Avoids use of mutex/locks/semaphores

» C# very strongly encourages the use of monitors and
has begun to phase out the alternatives

Readers and Writers

 In this model, threads share data that some threads
“read” and other threads “write”.
¢ Instead of CSEnter and CSExit we want
o StartRead...EndRead; StartWrite...EndWrite
 Goal: allow multiple concurrent readers but only a
single writer at a time, and if a writer is active, readers
wait for it to finish

Definition: A bounded buffer

e Start by imagining an unbounded (infinite) buffer
* Producer process writes data to buffer
* Writes to In and moves rightwards

¢ Consumer process reads data from buffer
¢ Reads from Out and moves rightwards
¢ Should not try to consume if there is no data

Out In

Need an infinite buffer

Producer-Consumer Problem
* Bounded buffer: size ‘N’

o Access entry o... N-1, then “wrap around” to o again
* Producer process writes data to buffer

¢ Must not write more than ‘N’ items more than consumer “ate”
¢ Consumer process reads data from buffer

¢ Should not try to consume if there is no data

In Out

2/16/2009

Producer-Consumer Problem

* A set of producer threads and a set of consumers share
a bounded buffer

» We'll say that a producer is a process (thread) that puts
information into the bounded buffer

o ...and a consumer is a process (thread) that removes
data from the buffer

 Both should wait if action is currently impossible

Producer-Consumer Problem

* Solving with semaphores
* We'll use two kinds of semaphores

o We'll use counters to track how much data is in the
buffer

» One counter counts as we add data and stops the producer if
there are N objects in the buffer

« A second counter counts as we remove data and stops a consumer
if there are o in the buffer

¢ Idea: since general semaphores can count for us, we
don’t need a separate counter variable

* Why do we need a second kind of semaphore?
¢ We'll also need a mutex semaphore

Producer-Consumer Problem

* A number of applications:
¢ Data from bar-code reader consumed by device driver

« Data in a file you want to print consumed by printer spooler, which
produces data consumed by line printer device driver

* Web server produces data consumed by client’s web browser
* Example: so-called “pipe” (|) in Unix

> cat file | sort | uniq | more

> prog | sort
® Thought questions: where’s the bounded buffer?
* How “big” should the buffer be, in an ideal world?

roducer-Consumer Solution

Shared: Semaphores mutex, empty, full;

Init: mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty buf entries */
full=0; /* number full buf entries */

Producer Consumer

do{ do{
o full.acquire();
// produce an item in nextp mutex.acquire();
.Z;V;PTY~ﬂCqUiFE()J // remove item to nextc

mutex.acquire();

- ;n.Li'rex.release();
// add nextp to buffer empty.release();

mutex.release(); // consume item in nextc
full.release();

} while (true); i} w.h-iie (true);

Readers-Writers Problem

¢ Courtois et al 1971

* Models access to a database

o Areader is a thread that needs to look at the database but won't
change it.

o Awriter is a thread that modifies the database

* Example: making an airline reservation

* When you browse to look at flight schedules the web site is acting
as a reader on your behalf

* When you reserve a seat, the web site has to write into the database
to make the reservation

Readers-Writers Problem

¢ Clarifying the problem statement.

¢ Suppose that a writer is active and a mixture of readers
and writers now shows up. Who should get in next?

 Or suppose that a writer is waiting and an endless of
stream of readers keeps showing up. Is it fair for them to
become active?

* We'll favor a kind of back-and-forth form of
fairness:
e Once a reader is waiting, readers will get in next.
o If a writer is waiting, one writer will get in next.

Readers-Writers Problem

* Many threads share an object in memory
e Some write to it, some only read it
¢ Only one writer can be active at a time
¢ Any number of readers can be active simultaneously

° Readers and Writers basically generalize the
critical section concept: in effect, there are two
flavors of critical section

2/16/2009

Readers-Writers Notes

o If there is a writer
o First reader blocks on wrl
¢ Other readers block on mutex
* Once areader is active, all readers get to go through
e Trick question: Which reader gets in first?
o The last reader to exit signals a writer
o If no writer, then readers can continue
e If readers and writers waiting on wrl, and writer exits
¢ Who gets to go in first?
* Why doesn’t a writer need to use mutex?

eaders-Writers (Take 1)

Shared variables: Semaphore mutex, wrl;

integer rcount; Reader

do {
mutex.acquire();
rcount++;
if (rcount == 1)
4 wrl.acquire();
\g(/)r(l'rer mutex.release();

Init: mutex = 1, wrl =1, rcount = O;

S R 5
Wil /*reading is performed*/

l/;‘\;vrifing is performed*/ mutexacquirel);

rcount--;
S if (rcount == 0)
wrl.release(); wrl.release();

mutex.release();

Jwhile(TRUE); Jwhile(TRUE);

Does this work as we hoped?

o If readers are active, no writer can enter
e The writers wait doing a wrl.wait();
* While writer is active, nobody can enter
e Any other reader or writer will wait
 But back-and-forth switching is buggy:
¢ Any number of readers can enter in a row
¢ Readers can “starve” writers
* With semaphores, building a solution that has the
desired back-and-forth behavior is really tricky!
¢ We recommend that you try, but not too hard...

Whoever next calls wait() will freeze
up. The bug might be confusing
because that other process could be
perfectly correct code, yet that’s the won'’t respect mutual

Aty

(foreve

wait() o

Q23 process will freeze up too wh:
to enter the critical s¢

one you'll see hung when you use the 'the other processes
debugger to look at its state!

op. i ther processes
might g CS inappropriately!

19

2/16/2009

More common mistakes

¢ Conditional code that

can break the normal

top-to-bottom flow of code -

in the critical section ié‘;“y;\";i(l)ng L
* Often a result of someone return;

trying to maintain a gsr 0

program, e.g. to fix a bug :

or add functionality in code

written by someone else

hat’s wrong?

Shared: Semaphores mutex, empty, full;

Init: mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty bufs */
full=0; /* number full bufs */

Producer

Oops! Even if you do the correct
do operations, the order in which you do
semaphore operations can have an

p P .acquire():
incredible impact on correctness 9 0

ex.acquire();
What if buffer is full? // remove item to nextc

mutex.release();

/7 add nextp to buffer empty.release();
;fn'u.Tex,releose(); // -Consume item in nextc
full.release(); =

} while (true); } while (true); 2

Semaphores considered harmful

* Semaphores are much too easy to misuse
* Basically, we're using them in two ways
» One relates to mutual exclusion (initialized to 1)
¢ The other is as a tool to block a thread for some reason

encoded into the logic of our program (initialized to
some value but it could be o, and could be > 1).

* The resulting code is spaghetti... like code with “goto”

* These observations led to the invention of monitors

Monitors

* Hoare 1974
o Abstract Data Type for handling/defining shared resources
¢ Comprises:

o Shared Private Data

« The resource

« Cannot be accessed from outside
¢ Procedures that operate on the data

« Gateway to the resource

« Can only act on data local to the monitor
e Synchronization primitives

« Among threads that access the procedures

Monitor Semantics

* Monitors guarantee mutual exclusion
¢ Only one thread can execute monitor procedure at any time
« “in the monitor”
¢ If second thread invokes monitor procedure at that time

« It will block and wait for entry to the monitor
= Need for a wait queue

o If thread within a monitor blocks, another can enter

¢ The idea is that the language itself provides the locking

ructure of a Monitor in Java

public class monitor_name For example:

// shared variable declarations f“b'ic class stack

synchronized P1(. ..) { int top;
. object[] S = new object[1000];

}

Srhenato public synchronized void push(object o)
1 S[top++] = o

}

public synchronized object pop() {

éynchronized PNG){: if(top == 0)
s return null;
) return S[--topl;
initialization_code(. . ..) {
) e }
only one thread can modify any given
) stack at a time 25

Complication

e Calling these methods requires a special incantation
on some versions of Java

* You can't just call xyz.wait().

* Instead youdo synchronized(xyz) { xyz.wait(); }
* And... synchronized(xyz) { xyz.notify(); }

e This is annoying but required

2/16/2009

Synchronization Using Monitors

* In Java, any variable can be a condition variable
» We'll use an object (a kind of empty, generic container).

© Three operations can be done on such a variable
« x.wait(): release monitor lock, sleep until woken up
= condition variables have waiting queues too
« x.notify(): wake one process waiting on condition (if there is one)
« x.notifyall(): wake all processes waiting on condition

* All of them require that %)u “synchronize” (“lock”) the object before
calling these methods. We'll see examples.

 Condition variables aren’t semphores
* They don't have values, and can't “count”

4

roducer Consumer: Basic “idea’

public class Producer_Consumer { public Object get() {
int N; Object obj;
Object(] buf; while(n == 0)
intn = o, tail = 0, head = o; not_empty.wait();
Object not_empty = new Object(); obj = buftail%N];
Object not_full = new Object(); tail++;
n—-;
public Producer_Consumer(int len) { not_full.notify();
buf = new object(len]; return obj;
N =len; }

} }
What if no thread is waiting

public void put(Object obj) { when notify is called?

while(n == N)
n IL.wait(); : :
buﬂolntg:li%N? S())bi; Notify is a “no-op” if nobody
head++; is waiting. This is very different
N+ from what happens when you call
not_empty.notify(); release() on a semaphore - semaphores
} have a “memory” of how many times

release() was called!

More complications

* Java has another “bug”

* In general, the “condition” that caused someone to
wake up a thread (via notify) could stop being true by
the time the thread actually gets scheduled. Yuck.

* So... Don’t write

e if(condition) synchronized(xyz) { xyz.wait(); }
* Instead use

» while(condition) synchronized(xyz) { xyz.wait(); }

roducer Consumer: Synchronization added

public class Producer_Consumer { public Object get() {
int N; Object obj;
Object(] buf; synchronized(not_empty) {
intn = o, tail = 0, head = o; while(n == o)
Object not_empty = new Object(); not_empty.wait();
Object not_full = new Object(); obj = buf[tail%N];
tail++;
public Producer_Consumer(int len) { synchronized(this) { n—-; }
buf = new object[len];
N =len; synchronized(not_full) { not_full.notify(); }
} return obj;

public void put(Object obj) { }
synchronized(not_full) {
while(n == N)
not_full.wait();
buflhead%N] = obj;
head++;
synchronized(this) { n++; }

synchronized(not_empty) { not_empty.notify(); }

Not a very “pretty solution”

 Ugly because of all the “synchronized” statements
 But correct and not hard to read

* Producer consumer is perhaps a better match with
semaphore-style synchronization

* Next lecture we'll see that ReadersAndWriters fits the
monitor model very nicely

Atomic code blocks

* Not widely supported yet - still a research concept

» Extends Java with a new construct called atomic

¢ Recall the definition of atomicity: a block of code that
(somehow) is executed so that no current activity can
interfere with it
« Tries to automate this issue of granularity by not talking
explicitly about the object on which lock lives

« Instead, the compiler generates code that automates
enforcement of this rule

P

Beyond monitors

* Even monitors are easy to screw up

» We saw this in the last lecture, with our examples of
misuses of “synchronized”

¢ We recommend sticking with “the usual suspects”
* Language designers are doing research to try and
invent a fool-proof solution’
¢ One approach is to offer better development tools that
warn you of potential mistakes in your code
¢ Another involves possible new constructs based on an
idea borrowed from database “transactions”

2/16/2009

Atomic blocks

void deposit(int x) { void deposit(int x) {

synchronized(this) { atomic {
int tmp = balance; int tmp = balance;
tmp += X; tmp += X;
balance = tmp; balance = tmp;

3 3

3

| Lock acquire/release |

| (As if) no interleaved computation

Easier-to-use primitive
(but harder to implement)

Atomic blocks

void deposit(.) { atomic { .. } }
void withdraw(.) { atomic { .. } }
int balance(.) { atomic { .. } }

void transfer(account from, int amount) {

| No concurrency control: race!

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);

}

Atomic blocks

void deposit(.) { atomic { .. } }
void withdraw(.) { atomic { .. } }
int balance(.) { atomic { .. } }

void transfer(account from, int amount) {

atomic {

| Correct and enables parallelism!

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);
}
3

Like magic!

* Not exactly...

e Typically, compiler allows multiple threads to execute
but somehow checks to see if they interfered

e This happens if one wrote data that the other also wrote,
orread

¢ In such cases, the execution might not really look
atomic... so the compiler generates code that will roll
one of the threads back (undo its actions) and restart it

* So, any use of atomic is really a kind of while loop!

p—

Constraint on atomic blocks

* They work well if the amount of code inside the block
is very small, executes quickly, touches few variables
e This includes any nested method invocations...

e Minimizes chance that two threads interfere, forcing
one or the other to roll-back and try again

Constraint on atomic blocks

* This has people uncomfortable with them!

* With synchronized code blocks, at least you know
exactly what’s going on

* Because atomic blocks can (secretly) roll-back and
retry, they have an implicit loop... and hence can loop
forever, silently.

¢ R. Guerraoui one of the first to really emphasize this
¢ He believes it can be solved with more research

p

2/16/2009

Atomic blocks

void deposit(.) { atomic { .. } }
void withdraw(.) { atomic { .. } }
int balance(.) { atomic { .. } }

void transfer(account from, int amount) {

Cool! | bet it will loop forever!
do{ I P I

if (from.balance() >= amount) { -

from.withdraw(amount);
this.deposit(amount);
Ywhile(interference_check() == FAILED);

Constraint on atomic blocks

* Nothing prevents you from having a lot of code inside
the atomic block, perhaps by accident (recursion,
nesting, or even access to complicated objects)

e If this happens, atomic blocks can get “stuck”

e For example, a block might run, then roll back, then try
again... and again... and again...

e Like an infinite loop... but it affects normal correct code!

* Developer is unable to tell that this is happening
¢ Basically, nice normal code just dies horribly...

ey

Will Java have atomic blocks soon?

* Topic is receiving a huge amount of research energy

e As we just saw, implementing atomic blocks (also called
transactional memory) is turning out to be hard

¢ Big companies are betting that appropriate hardware
support might break through the problem we just saw

e But they haven't yet succeeded

* As of 2009, no major platform has a reliable atomicity
construct... but it may happen “someday”

4

P

Language Support Summary

* Monitors often embedded in programming language:
¢ Synchronization code added by compiler, enforced at runtime

« Java: synchronized, wait, notify, notifyall
+ mutex and semaphores (acquire... release)

o Ci#: part of the monitor class, from which you can inherit.
Implements lock, wait (with timeouts) , pulse, pulseall

° Atomic: coming soon?

© None is a panacea. Even monitors can be hard to code
¢ Bottom line: synchronization is hard!

3

2/16/2009

