Critical Sections with lots
of Threads

Ken Birman

Can we generalize to many threads?

* Obvious approach won’t work:

CSEnter(int i) CSExit(int i)
{ {
insideli] = arue; inside[i] = false;
for(J = 0;] < N; J++)
while(inside[J] && turn == J) }
continue;

}

* Issue: notion of “who’s turn” is next for breaking ties

1/25/2009

Refresher: Deker’s Algorithm

* Assumes two threads, numbered o and 1

CSEnter(int i) CSExit(int i)
{ {
int] =i’y inside[i] = false;
inside[i] = true; }
turn=J;
while(inside[]] && turn ==])
continue;
}

* Think of the (very popular) pastry
shop in Montreal’s Marché Atwater
e People take a ticket from a machine
« If nobody is waiting, tickets don’t matter
¢ When several people are waiting, ticket
order determines sequence in which they
can place their order

I
Bakery Algorithm: “Take 1”

¢ int ticket[n]; CSExit(int i)
© int next_ticket; {
CSEnter(int i)

}

ticket[i] = ++next_ticket;
for(k = 0; k < N; k++)
while(ticket[k] && ticket[k] < ticket[i])
continue;

}
+ Oops... access to next_ticket is a problem!

ticket[i] = o;

I
Bakery Algorithm: “Take 2”

* int ticket[n]; CSExit(int i)
CSEnter(int i) { ticket[i] = o;
1

ticket[i] = max(ticket[o], ... ticket[N-1])+1;
for(k = 0; k < N; k++)
while(ticket[k] != o && ticket[k] < ticket[i])
continue;

}
+ Clever idea: just add one to the max.

* Oops... two could pick the same value!

Bakery Algorithm: “Take 3”

If i, k pick same ticket value, id’s break tie:
(ticket[k] < ticket[i]) || (ticket[k]==ticket[i] && k<i)
Notation: (B,]) < (A,i) to simplify the code:
(B<A || (B==A && k<i)), e.g.:

(ticket[k],k) < (ticket[i],i)

p——

Bakery Algorithm: Almost final

* int ticket[N];
* boolean choosing[N] = false;

CSEnter(int i) CSExit(int i)

{ {
choosingli] = true; ticket[i] = o;
ticket[i] = max(ticket[o], ... ticket[N-1])+1; }
choosing]i] = false;

for(k = 0; k < N; k++) {
while(choosing[k]) continue;
while(ticket[k] && (ticket[k],k) < (ticket[i],i))

continue;

W

Eliminating overflow

do{
ticket[i] = o;
choosing][i] = true;
ticket[i] = max(ticket[o], ... ticket[N-1])+1;
choosing]i] = false;
} while(ticket[i] >= MAXIMUM);

Bakery Algorithm: “Take 4”

 int ticket[N];

CSExit(int i)
¢ boolean picking[N] = false; {
CSEnter(int i) ticketlil—o:
(3
ticket[i] = max(ticket[o], ... ticket[N-1])+1; }

for(k = 0; k < N; k++)
while(ticket[k] && (ticket[k],k) < (ticket[i],i))

continue;

}

* Oops... i could look at k when k is still

storing its ticket, and yet k could have the
lower ticket number!

p———

1/25/2009

Bakery Algorithm: Issues?

* What if we don’t know how many threads might be
running?

e The algorithm depends on having an agreed upon value
for N

¢ Somehow would need a way to adjust N when a thread is
created or one goes away

e Also, technically speaking, ticket can overflow!

e Solution: Change code so that if ticket is “too big’, set it
back to zero and try again.

W

Adjusting N
* This won't happen often
e Simplest: brute force!

¢ Disable threading temporarily

e Then change N, reallocate array of tickets, initialize to o
e Then restart the threads package

* Sometimes a crude solution is the best way to go...

Bakery Algorithm: Final

« intticket[N]; /* Important: Disable thread scheduling when changing N */
¢ boolean choosing[N] = false;
CSEnter(int i)
{
dof -
ticket[i] = o; ticket[i] = o;
choosingli] = true; }
ticket[i] = max(ticket[o], ... ticket[N-1])+1;
choosingi] = false;
} while(ticket[i] >= MAXIMUM);
for(k = 0; k < N; ke+) {
while(choosing[k]) continue;
while(ticket[k] && (ticket[k] k) < (ticket[i],i))

continue;

CSExit(int i)

1/25/2009

Bakery Algorithm is really theory... A
lesson in thinking about concurrency

Synchronization in real systems

 Few real systems actually use algorithms such as
the bakery algorithm

e In fact we learned because it helps us “think about”
synchronization in a clear way

o Real systems avoid that style of “busy waiting” although,
with multicore machines, it may be coming back

Critical Sections with Atomic Hardware

Primitives Proces: |
Share: int lock;
Initialize: lock = false;

While(test_and_set(&lock));

Assumes that test_and_set is
compiled to a special hardware
instruction that sets the lock and
returns the OLD value (true:

locked; false: unlocked) lock = fals
OCK = Talse,

Problem: Does not satisfy liveness (bounded waiting)
(see book for correct solution)

Critical Section

Critical Sections with Hardware

* Hardware (multicore) platforms demand some kind of
synchronization down in the O/S kernel
¢ Needs to map directly to machine instructions
e Usually exploits some form of “test and set” instruction

e This kind of instruction is also available in user code,
but user-level applications would rarely employ it
e In applications user’s build, there is usually some kind of
language-level support for synchronization

Higher level constructs

* Even with special instructions available, many O/S
designers prefer to implement a synchronization
abstraction using the special instructions

* Why?

» Makes the O/S more portable (not all machines use the
same set of instructions)

e Help’s us think about synchronization in higer-level
terms, rather than needing to think about hardware

e

Mutex variables

* A special kind of variable
Mutex x = new Mutex();

* Implemented as a semaphore i stmts (1

performs statements atomi

cally

* Two operations:
x.acquire()
x.release() 0 x = x+1[]

O wait until x > o, then set x = x-1 and continue 0

Side remark

* Dijkstra was first to introduce semaphores with operations
* P(x) - passeren
 V(x) - verhogan

¢ Book calls them
* x.wait()
o X.signal()

* We're focusing on Java because you are more likely to use
Java in your career

PpaSS—__

Mutex and Critical Sections

Mutex mutex;
CSEnter() { mutex.acquire();}

CSExit() { mutex.release(); }

P

Semaphores

* In Java, a semaphore is a form of Mutex initialized to
some integer value greater than 1

Semaphore max_readers = new Semaphore(3);

max_reader.acquire(); // counts down, then blocks

max_reader.release();

1/25/2009

Definition: atomically

* Means “this code must (somehow) execute without
interruptions

the atomic portion
e Perhaps using special instructions

e Perhaps some other tricky scheme...

way of supporting that behavior on a particular CPU

e O/S implementer would need to find a way to implement

e Perhaps by disabling interrupts (if there is just one core)

* Idea is to separate the “behavior” required from the best

PSS

Attempt

¢ In Java, you can “attempt” to acquire a mutex or
semaphore

¢ With no timeout, either your attempt succeeds, or it
throws an exception

¢ There is also a timer variation, where you can specify an
amount of time your code is willing to wait

* This is used to avoid getting “stuck” waiting forever, in

complex programs where many people implemented
different parts of the code

1/25/2009

Java also has “synchronized”

e Under the covers, the real Java synchronization
mechanism is a kind of built-in lock on objects

public synchronized void myProcedure(...)

e Can also synchronize on a variable

public synchronized(x) void myProcedure(...)

* Or even use as a statement

synchronized(x) { ... code }

But synchronized is tricky...
void deposit(.) { synchronized(this) { .. } }
void withdraw(..) { synchronized(this) { .. } }
int balance(.) { synchronized(this) { .. } }

void transfer(account from, int amount) {

| No concurrency control: race!

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);

¥

But synchronized is tricky...
void deposit(.) { synchronized(this) { .. } }
void withdraw(.) { synchronized(this) { .. } }
int balance(.) { synchronized(this) { .. } }

void transfer(account from, int amount) {

synchronized(this) { | Race!

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);

3

3

But synchronized is tricky...

void deposit(.) { synchronized(this) { .. } }
void withdraw(.) { synchronized(this) { .. } }
int balance(.) { synchronized(this) { .. } }

void transfer(account from, int amount) {
synchronized(this) { |
synchronized(from) {
if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);
}
}
3
3

Deadlock!

PpaSS—__

Yet additional options

 Every Java object also has built-in methods:
¢ Obj.wait(): not semaphores! Calling thread always
blocks
» Obj.notify(): wakes up one blocked thread (FIFO)
 Obj.notifyAll(): wakes up all blocked threads

* These are used to support monitors (next lecture)

PSS

Main “take away”

* Java has many options for locking things
e Mutex (binary semaphores): like locks
¢ General semaphores
e Synchronized classes
¢ Object.wait/notify

* Too many choices!
¢ What we really need to understand is how to use these
to obtain correct solutions...

