
1

CS414/415 Section 5
Project 4: Reliable networking

Krzysztof Ostrowski
krzys@cs.cornell.edu
Slides modified from previous years’ slides

What do you have to do?

l A connection-based, stream-like reliable 
communication, similar to TCP.

l Features:
l Connection-based (open, close etc.).
l Guarantee that packets are delivered.

l At least once (not lost in the network).
l At most once (no duplicates).
l Guarantees are not absolute (cannot be).



2

What do you have to do?

l Features (continued):
l Ordering: deliver in sequence (FIFO).
l Congestion control (sort of a sliding window 

with size one).
l Stream-like (as opposed to packet-like) 

semantics:
l Can send data blocks of any size: should 

fragment.
l Can receive packets of any size.

How is it related to project #3 ?

l Unreliable/reliable protocols will co-exist.
l Two separate APIs, sender can use both 

simultaneously.
l Unrel.: ”minimsg.h”, rel.: ”minisocket.h”
l One may rely on the other, but…
l …keep code reasonably separate and isolated!

l Receiver recognizes type of communication. 
l Demultiplexing: a new protocol type field in the 

base header, passing control to the right place.



3

How is it related to project #3 ?

l Common base abstractions:
l We are still using ports as communication 

endpoints for both protocols.
l Common base packet header (addr., ports)

l Headers for other protocols staked on top of it

l We will use miniports for unreliable, sockets 
for reliable networking.
l User cannot use same ports for both kinds of 

communication (miniports hidden in sockets).

A connection-based protocol

l Connection identified by port numbers
l A typical scenario has multiple stages:

l Server waiting for a client to connect
l Client connects, information about connection (eg. 

port numbers) exchanged via hand-shaking
l Client and server can send data in any direction
l Client explicitly closes the connection

l However, server can do it too (eg. when shutting down)

l After connection closed, no send/receive succeeds
l Socket is destroyed: accepting more clients 

requires that a new socket be created



4

Achieving reliability

l At least once:
l Delivery confirmation: acknowledgement for every 

packet received (ACK).
l Resending if not confirmed (timeout with an 

exponential back-off).
l At most once:

l Suppressing duplicates
l Receiver: duplicate data packets when ACK lost
l Sender: duplicate ACKs when data believed lost but not 

really lost (only delayed)

l Not only for data, but also for control packets!
l Duplicate requests to open/close connection etc.

Ordering and flow control

l Ordering: sequence numbers in packets
l Normally: buffering, variable-size window, 

suppressing delivery of packets etc.
l Flow control: dropping packets

l Normally: we use sliding window with size adjusted 
to bandwidth

l You can make window size to be equal to one
l Simplifies implementation tremendously
l One data packet in transit at all times (very slow)
l Still need to keep / check sequence numbers



5

Achieving stream-like semantics

l Send data of any size: fragmentation
l We simply cut in small pieces (arbitrarily)

l Assume packet boundaries as determined by 
the sender app. are meaningless (byte stream)

l Don’t put “reassembling” information in packets
l Receiver treats all incoming data as parts of a 

single infinite byte stream
l Ordering is essential to guarantee correctness here!
l When data requested, may need to merge data from a 

few packets to fill the buffer given by client application

Achieving stream-like semantics

l Receive data of any size:
l Specify maximum amount of data to receive

l May consume only a part of an incoming packet
l An “unused” part of the packet is left in the 

socket for another receive operation to consume

l May receive less data than requested
l Since it’s a stream, the exact size doesn’t matter
l Client application is assumed smart enough to 

know what to do with the incoming stream
l For example, it could add some “merging” information
l We don’t care about it



6

Achieving stream-like semantics

l One-sender-to-one-receiver, but…
l …multiple threads can send, and what’s worse…
l …multiple threads can issue receive to the same 

socket concurrently
l Threads will form a receiver queue to the socket
l Independent threads can receive random pieces of data!
l They will need to know how to reassemble them

l We don’t care about it, it’s up to the application to assemble

l Still, all control communication (ACKs etc.) will 
need to be handled globally, in parallel
l May require dedicated some threads for this purpose

Minisockets API (to implement)

l Creating socket on the server:
minisocket_t minisocket_server_create(int port,

minisocket_error *error);

l Server installed on a specific port (may fail)
l Waits for incoming connection

l Blocking (completes only after client connected)
l Returns a complete socket connected with client

l Simplification: one-to-one communication
l Only a single client can connect (so it could fail)
l Once a client connected, connecting not allowed



7

Minisockets API (to implement)

void minisocket_initialize();

minisocket_t minisocket_client_create(
network_address_t addr, int port,
minisocket_error *error);

int minisocket_send(
minisocket_t socket, minimsg_t msg, 
int len, minisocket_error *error);

int minisocket_receive(
minisocket_t socket, minimsg_t msg, 
int max_len, minisocket_error *error);

void minisocket_close(minisocket_t socket);
void minisocket_destroy(minisocket_t socket);

Our protocol stack

l Base header from “miniports.c” acts as our 
UDP/IP-like protocol header
l Need it to identify communication endpoints
l Need to extend it with protocol type field

Network

UDP-like protocol

TCP-like protocol

User applicationl Add a new, TCP-like 
header on top of that

l Don’t mix info about the 
reliable communication with 
the base header!



8

Implementation approaches

l Approach #1: “TCP” on top of “UDP/IP”
l “UDP/IP” doesn’t know much about “TCP”

l May need to add miniport “types” to represent various 
types of protocols stacked on top

l Still should check if the packets received match the type of 
receiver (application directly / “TCP”)

l “TCP” uses “UDP” via “send/receive”
l Any interaction via interface defined in header.
l May need a separate thread for each port to handle 

control traffic (sending ACKs etc.)

l Arguably simpler to implement…
l …but that’s not the way things are done in real life.

Implementation approaches

l Approach #2: “TCP”, “UDP/IP” in parallel
l Neither of the two protocols “knows” about 

the other or “uses” the other:
l Two separate modules for the two protocols
l Demultiplexing in the network handler:

l passing control to the right module based on “type”

l Both are using the same “ports” infrastructure 
l Some code will inevitably be duplicated…

l …but we should still keep the two modules reasonably 
separate, their code shouldn’t be intermingled. 



9

Retransmission scheme

l Send, wait for ACK for a given timeout

l Complete if ACK is received on time
l We don’t send ACK to ACK here!

l Resend if ACK not arrived on time
l Attempt up to 7 times, then give up (error)
l Start with 100ms delay, then x2 each time
l If an “old” ACK arrives now, it’s still OK

Hand-shaking protocol

l Stages:
l Client sends OPEN_CONNECTION
l Server responds with ACK

l It might also respond with error:
l Socket in use by another client
l Socket does not exist
l Socket exists, not in use, but no thread waiting

l Client confirms ACK with his own ACK

l Retransmission scheme applies here!



10

Implementation hints

l Think about it as a state machine
l States / state:

l Server: waiting for a client to arrive, client is connected, 
closing the socket, … 

l Client: waiting for server to accept connection, …
l Server/Client: various stages while sending a packet (ACK 

received? Which resending attempt? What timeout period?)
l …

l State transitions:
l Packets received
l An API function called
l Timeout expired
l …

Questions?

l Ask if not sure.
l By all means, come to office hours.


