
CS 4410
Operating Systems

Computer Architecture Review
Oliver Kennedy

The Dawn of Computing

The OS!

Multitasking

So what’s under the hood?

Well... not quite

Networks

A CPU
• Registers:

• The CPU’s short term memory.

• Arithmetic Logic Unit:

• Where most of the work gets done.

• Floating Point Unit:

• Handles the “decimal” calculations.

• Caches:

• Reduce memory access times.

The Pipeline
• A lot of computation goes into a single instruction.

• Can some of this computation be done in parallel?

• Set up an assembly line.

• Each stage processes a little and passes it on.

• Utilize hardware more intensively

• Less work per stage means stages can run faster.

• Why not have lots and lots of stages?

• What happens if we don’t know what will happen next?

• What happens if one instruction needs data from an earlier instruction?

The Pipeline
• Avoiding delays:

• Branch Prediction.

• Instruction Reordering.

• Currently, most pipelines are 10-15 stages in length.

• Fetch the instruction

• Decode/Dispatch the instruction.

• Get necessary data.

• Perform necessary calculations.

• Write the results to registers/memory.

The Multicore Revolution
• Moore’s law continues, but not like everyone expected.

• More transistors, but the density is too high.

• How can we use the extra transistors?

• Make one CPU into two, sixteen, sixty four... or more.

• Do more at the same speed.

• Push towards multithreaded programming languages.

• ... need OS support.

The Memory Hierarchy
• Registers: 8-64 integers/floats at a time.

• Available immediately.

• L1 Cache: ~32KB Data, ~32KB Instructions.

• Short access time (2-3 cycles).

• L2 Cache: 1-2 MB.

• Moderate access time (~10-20 cycles).

• Main Memory: up to 4GB or more.

• Long access time (on the order of 100 cycles).

• Prefetching is used to increase cache hits.

Why a Hierarchy?
• Tradeoff between speed and expense of hardware: very high-

speed memory is expensive. (Also, physical distance can be a
limit)

• Programs typically have strong locality: most accesses are near
previous accesses, in both space and time.

• Spatial locality: accesses to nearby addresses

• Temporal locality: same resource accessed twice

• Can get very high cache hit rates with comparatively small
cache.

• Mostly stay on fast path

Stacks
• Functions in most languages execute in a LIFO order:

• Therefore, can store local variables on a stack:

• Each function allocates an activation record by decrementing
stack pointer register; can use that area for locals.

• Increment SP to return.

• Note that this is just a region of main memory accessed with
stack discipline; hardware may not treat it specially

• Can switch stacks by changing value of SP register.

• Note: not all programs use a stack; ML code typically won’t.

Calling Conventions
• Which registers can a function use? Where are parameters? Pushed in

what order? Who removes them from stack?

• Check calling convention

• Example: typical conventions for IA32

• EAX, ECX, EDX are caller-save, rest are callee-save

• Args on stack, either left to right (stdcall) or r. to l. (cdecl)

• In ‘stdcall’ convention, callee pops params from stack. In ‘cdecl’, caller.

• In C, callee doesn’t always know how many params there are, since
some functions are varargs.

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

bazSP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
3

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
5

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

2
5

SPBP

baz

foo's regs

baz

Old BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
8

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
BP

SP

8
Return value goes in a

special register
(Or goes onto the stack)

2
baz

5

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
SPBP

Traps/Interrupts

Traps/Interrupts
• What does the hardware do when something unexpected happens?

• The software does something wrong. (Divide by 0)

• The software asks for a wakeup call.

• The user presses a key on the keyboard.

Traps/Interrupts
• What does the hardware do when something unexpected happens?

• The software does something wrong. (Divide by 0)

• The software asks for a wakeup call.

• The user presses a key on the keyboard.

• It could just set a flag and have the software check for it.

• Processor intensive.

• Defeats the point of an operating system.

Traps/Interrupts
• What does the hardware do when something unexpected happens?

• The software does something wrong. (Divide by 0)

• The software asks for a wakeup call.

• The user presses a key on the keyboard.

• It could just set a flag and have the software check for it.

• Processor intensive.

• Defeats the point of an operating system.

• Instead, the processor pauses what it’s doing and and calls a callback.

Traps/Interrupts

Traps/Interrupts
• How does the processor know what code to execute?

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

• Disable interrupts while processing one.

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

• Disable interrupts while processing one.

• Have multiple levels of interrupt.

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

• Disable interrupts while processing one.

• Have multiple levels of interrupt.

• Most architectures keep a short queue of interrupts waiting
to be delivered.

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

• Disable interrupts while processing one.

• Have multiple levels of interrupt.

• Most architectures keep a short queue of interrupts waiting
to be delivered.

• But what about traps?

Traps/Interrupts
• How does the processor know what code to execute?

• Most architectures define a datastructure for a Interrupt
Vector Table.

• What happens if an interrupt is interrupted?

• Disable interrupts while processing one.

• Have multiple levels of interrupt.

• Most architectures keep a short queue of interrupts waiting
to be delivered.

• But what about traps?

• Identical to interrupts, except triggered by code (/ by 0).

IO

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

• Also works with networks. (a packet just arrived)

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

• Also works with networks. (a packet just arrived)

• The hard drive’s connected to the disk controller...

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

• Also works with networks. (a packet just arrived)

• The hard drive’s connected to the disk controller...

• A small piece of hardware (the controller) controls the IO
device and communicates with the processor via a bus.

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

• Also works with networks. (a packet just arrived)

• The hard drive’s connected to the disk controller...

• A small piece of hardware (the controller) controls the IO
device and communicates with the processor via a bus.

• A small piece of software (a driver) interprets the data sent to
the processor by the controller and communicates this
information to the OS.

IO
• Hard disks are slow. Do we want to wait idly for data to arrive?

• Signal data availability with an interrupt.

• Also works with networks. (a packet just arrived)

• The hard drive’s connected to the disk controller...

• A small piece of hardware (the controller) controls the IO
device and communicates with the processor via a bus.

• A small piece of software (a driver) interprets the data sent to
the processor by the controller and communicates this
information to the OS.

• Finally, the OS notifies the program that data is available.

Protection Levels

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

• Have multiple access levels. (user, system, etc..)

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

• Have multiple access levels. (user, system, etc..)

• Restrict access to certain instructions in less privileged
levels.

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

• Have multiple access levels. (user, system, etc..)

• Restrict access to certain instructions in less privileged
levels.

• Most architectures have an instruction to give up privileges,
but no instruction to regain them.

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

• Have multiple access levels. (user, system, etc..)

• Restrict access to certain instructions in less privileged
levels.

• Most architectures have an instruction to give up privileges,
but no instruction to regain them.

• But how can the OS access the privileged instructions?

Protection Levels
• If the OS is going to be managing multiple programs, how

does it stop them from misbehaving?

• Have multiple access levels. (user, system, etc..)

• Restrict access to certain instructions in less privileged
levels.

• Most architectures have an instruction to give up privileges,
but no instruction to regain them.

• But how can the OS access the privileged instructions?

• Traps! (The famous INT 21)

Memory Management: Segments
• The 80286 was a 16 bit processor.

• It could address 2^16 (64k) of memory.

• 64k is tiny! Couldn’t it use more?

• It divided memory up into 64k segments. Applications
that needed more could set a segment register to change
which segment their addresses pointed to.

• The 80386 was a 32 bit processor.

• It could address 2^32 (4 gb) of memory.

• Segments were still convenient for isolating applications
from each other. (But it was messy)

Memory Management: Pages
• Segmentation is messy

• All memory needs to be allocated upfront

• Processes entering and leaving the system create holes.

• Instead, let’s break memory up into a large number of equally-
sized chunks (pages) and hand them to processes as needed.

• Create a Page Table

• When the CPU is told to access an address in memory, it
consults this table and translates the virtual address to a
physical address.

• A process still thinks it has the whole address space.

Memory Management: DMA
• Interrupts are slow.

• Pausing running code takes a lot of work.

• ... doubly so if you need to do anything complex.

• Transferring data from disk to memory involves a lot of
interrupts.

• Let the IO controller write directly to memory.

• This is called Direct Memory Access

• Another twist: Memory Mapped IO.

• Let the disk controller pretend to be a portion of memory.

