Relational Algebra

Chapter 4

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages ≠ programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational, very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative.)
Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL.

Example Instances

- “Sailors” and “Reserves” relations for our examples.
- We’ll use positional or named field notation, assume that names of fields in query results are ‘inherited’ from names of fields in query input relations.

Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - Projection (Π) Deletes unwanted columns from relation.
 - Cross-product (×) Allows us to combine two relations.
 - Set-difference (−) Tuples in reln. 1, but not in reln. 2.
 - Union (U) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, join, division, renaming: Not essential, but (very) useful.
 - Since each operation returns a relation, operations can be composed! (Algebra is “closed”.)
Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why?)
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)

```
<table>
<thead>
<tr>
<th>sname</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>yuppy</td>
<td>9</td>
</tr>
<tr>
<td>lubber</td>
<td>8</td>
</tr>
<tr>
<td>guppy</td>
<td>5</td>
</tr>
<tr>
<td>rusty</td>
<td>10</td>
</tr>
</tbody>
</table>
```

\[
\pi_{\text{sname}, \text{rating}}(S2)
\]

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

```
<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>
```

\[
\sigma_{\text{rating}>8}(S2)
\]

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be union-compatible:
 - Same number of fields.
 - ‘Corresponding’ fields have the same type.
- What is the schema of result?

```
<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
</tbody>
</table>
```

\[S1 \cup S2\]

\[S1 \setminus S2\]
Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names ‘inherited’ if possible.
 - **Conflict**: Both S1 and R1 have a field called `sid`.

```
<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>
```

- **Renaming operator**: \(\rho (C(1 \rightarrow \text{sid}1, 5 \rightarrow \text{sid}2), S1 \times R1) \)

Joins

- **Condition Join**: \(R \bowtie_c S = \sigma_c (R \times S) \)

```
<table>
<thead>
<tr>
<th>(sid)</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>
```

- **Result schema** same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

Joins

- **Equi-Join**: A special case of condition join where the condition \(c \) contains only equalities.

```
<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
<td></td>
</tr>
</tbody>
</table>
```

- **Result schema** similar to cross-product, but only one copy of fields for which equality is specified.
- **Natural Join**: Equijoin on all common fields.
Division

- Not supported as a primitive operator, but useful for expressing queries like:

 Find sailors who have reserved all boats.

- Let A have 2 fields, x and y, B have only field y.

 - $A/B = \{ (x) \mid \forall (y) \in B \exists (x, y) \in A \}$

 - i.e., A/B contains all x tuples (sailors) such that for *every* y tuple (boat) in B, there is an xy tuple in A.

 - Or: The set of y values (boots) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.

- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

```
<table>
<thead>
<tr>
<th>sno</th>
<th>pno</th>
<th>sno</th>
<th>pno</th>
<th>sno</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>p4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>p2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>p4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

$A = (A/B1, A/B2, A/B3)$

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.

 - (Also true of joins, but joins are so common that systems implement joins specially.)

 - **Idea:** For A/B, compute all x values that are not "disqualified" by some y value in B.

 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

 - Disqualified x values: $\pi_x ((\pi_x(A) \times B) - A)$

 - A/B: $\pi_x(A)$ - all disqualified tuples
Find names of sailors who’ve reserved boat #103

solution 1: \(\pi_{\text{sname}}(\sigma_{\text{bid}=103} \text{Reserves} \bowtie \text{Sailors})\)

solution 2: \(\rho(\text{Temp}, \sigma_{\text{bid}=103} \text{Reserves})\)
\(\rho(\text{Temp2}, \text{Temp} \bowtie \text{Sailors})\)
\(\pi_{\text{sname}}(\text{Temp2})\)

solution 3: \(\pi_{\text{sname}}(\sigma_{\text{bid}=103}(\text{Reserves} \bowtie \text{Sailors}))\)

Find names of sailors who’ve reserved a red boat

information about boat color only available in Boats; so need an extra join:

\(\pi_{\text{sname}}((\sigma_{\text{color}=\text{red}} \text{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors})\)

A more efficient solution:

\(\pi_{\text{sname}}(\sigma_{\text{bid}}((\sigma_{\text{color}=\text{red}} \text{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors})\)

_A query optimizer can find this, given the first solution!

Find sailors who’ve reserved a red or a green boat

can identify all red or green boats, then find sailors who’ve reserved one of these boats:

\(\rho(\text{Tempboats},(\sigma_{\text{color}=\text{red}} \lor \text{color}=\text{green} \text{Boats}))\)
\(\pi_{\text{sname}}(\text{Tempboats} \bowtie \text{Reserves} \bowtie \text{Sailors})\)

_can also define Tempboats using union! (How?)

_What happens if \(\lor\) is replaced by \(\land\) in this query?
Find sailors who’ve reserved a red and a green boat

Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

\[\rho (\text{Tempred}, \pi_{\text{sid}}((\sigma_{\text{color}=\text{red}} \text{Boats}) \bowtie \text{Reserves})) \]

\[\rho (\text{Tempgreen}, \pi_{\text{sid}}((\sigma_{\text{color}=\text{green}} \text{Boats}) \bowtie \text{Reserves})) \]

\[\pi_{\text{sname}}(\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors} \]

Find the names of sailors who’ve reserved all boats

Uses division; schemas of the input relations to / must be carefully chosen:

\[\rho (\text{Tempsids}, (\pi_{\text{sid,bid}} \text{Reserves}) / (\pi_{\text{bid}} \text{Boats})) \]

\[\pi_{\text{sname}}(\text{Tempsids} \bowtie \text{Sailors}) \]

To find sailors who’ve reserved all ‘Interlake’ boats:

\[\ldots / \pi_{\text{bid}}((\sigma_{\text{bname}=\text{Interlake}} \text{Boats})) \]

Summary

The relational model has rigorously defined query languages that are simple and powerful.

Relational algebra is more operational; useful as internal representation for query evaluation plans.

Several ways of expressing a given query; a query optimizer should choose the most efficient version.