Data Warehousing

Outline

- Overview of data warehousing
- Dimensional Modeling
- Online Analytical Processing

From OLTP to the Data Warehouse

- Traditionally, database systems stored data relevant to current business processes
 - Old data was archived or purged
- A database stores the current snapshot of the business:
 - Current customers with current addresses
 - Current inventory
 - Current orders
 - Current account balance

The Data Warehouse

- The data warehouse is a historical collection of all relevant data for analysis purposes
- Examples:
 - Current customers versus all customers
 - Current orders versus history of all orders
 - Current inventory versus history of all shipments
- Thus the data warehouse stores information that might be useless for the operational part of a business

Building a Data Warehouse

- Data warehouse is a collection of data marts
- Data marts contain one dimensional star schema that captures one business aspect
- Notes:
 - It is crucial to centralize the logical definition and format of dimensions and facts (political challenge; assign a dimension authority to each dimension). Everything else is a distributed effort throughout the company (technical challenge)
 - Each data mart will have its own fact table, but dimension tables are duplicated over several data marts

OLTP Versus Data Warehousing

	OLTP	Data Warehouse
Typical user	Clerical	Management
System usage	Regular business	Analysis
Workload	Read/Write	Read only
Types of queries	Predefined	Ad-hoc
Unit of interaction	Transaction	Query
Level of isolation required	High	Low
No of records accessed	<100	>1,000,000
No of concurrent users	Thousands	Hundreds
Focus	Data in and out	Information out

Three Complementary Trends

- Data Warehousing: Consolidate data from many sources in one large repository
 - Loading, periodic synchronization of replicas
 - Semantic integration
- OLAP:
 - · Complex SQL queries and views
 - Queries based on spreadsheet-style operations and "multidimensional" view of data

 - Interactive and "online" queries
- Data Mining: Exploratory search for interesting trends and anomalies (Another lecture!)

Warehousing Issues

- Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas
- Heterogeneous Sources: Must access data from a variety of source formats and repositories
- Replication capabilities can be exploited here
 Load, Refresh, Purge: Must load data,
- periodically refresh it, and purge too-old data
- Metadata Management: Must keep track of source, loading time, and other information for all data in the warehouse

Terminology

- OLTP (Online Transaction Processing)
- DSS (Decision Support System)
- DW (Data Warehouse)
- OLAP (Online Analytical Processing)

Outline

- · Overview of data warehousing
- Dimensional Modeling
- Online Analytical Processing

Dimensional Data Modeling

• Recall: The relational model

The dimensional data model:

- Relational model with two different types of attributes and tables
- Attribute level: Facts (numerical, additive, dependent) versus dimensions (descriptive, independent)
- Table level: Fact tables (large tables with facts and foreign keys to dimensions) versus dimension tables (small tables with dimensions)

Dimensional Modeling (contd.)

- Fact (attribute): Measures performance of a business
- Example facts:
 - Sales, budget, profit, inventory
- Example fact table:
 - Transactions (timekey, storekey, pkey, promkey, ckey, units, price)
- Dimension (attribute): Specifies a fact
 Example dimensions:
 - Product, customer data, sales person,
- store
 Example dimension
 - table: • Customer (ckey, firstname, lastname, address, dateOfBirth, occupation, ...)

OLTP versus Data Warehouse

OLTP

- Regular relational schema
 Normalized
- Updates overwrite previous values: One instance of a customer with a unique customerID
 Ouorios roturn
- Queries return information about the current state of affairs

Data warehouse

- Dimensional model
 Fact table in BCNF
 Dimension tables not normalized: few updates, mostly queries
- Updates add new version: Several instances of the same customer (with different data, e.g.,
- address)
 Queries return aggregate information about historical facts

Fact versus Dimension Tables

- Fact tables are usually very large; they can grow to several hundred GB and TB
- Dimension tables are usually smaller (although can grow large, e.g., Customers table), but they have many fields
- Queries over fact tables usually involve many records

Grain

- The grain defines the level of resolution of a single record in the fact table.
- Example fact tables:
 - Transactions (timekey, storekey, pkey, promkey, ckey, units, price); grain is individual item
 - Transactions (timekey, storekey, ckey, units, price); grain is one market basket

Typical Queries

• SQL: SELECT D1.d1, ..., Dk.dk, agg1(F.f1,) FROM Dimension D1, ..., Dimension Dk, Fact F WHERE D1.key = F.keyt AND ... AND Dk.keyk = F.keyk AND otherPredicates GROUP BY D1.d1, ..., Dk.dk HAVING groupPredicates

• This query is called a "Star Join".

Example Query

- "Break down sales by year and category for the last two years; show only categories with more than \$1M in sales."
- SQL: SELECT T.year, P.category, SUM(X.units * X.price) FROM Time T, Products P, Transactions X WHERE T.year = 1999 OR T.year = 2000 GROUP BY T.year, P.category HAVING SUM(X.units * X.price) > 1000000

Outline

- Overview of data warehousing
- Dimensional Modeling
- Online Analytical Processing

Online Analytical Processing (OLAP)

- Ad hoc complex queries
- Simple, but intuitive and powerful query interface
 - Spreadsheet influenced analysis process
- Specialized query operators for multidimensional analysis
 - Roll-up and drill-down
 - Slice and dice
 - Pivoting

ultidimensional Data Analysis			
	NY	CA	WI
Industry1	\$1000	\$2000	\$1000
Industry2	\$500	\$1000	\$500
Industry3	\$3000	\$3000	\$3000
Industry Category Product	Count	try="USA" State City	Year Quarter Month Wee Day

Slice and	Drill-Dowr	۱	
	San Francisco	San Jose	Los Angeles
Category1	\$300	\$300	\$400
Category2	\$300	\$300	\$400
Category3	\$100	\$800	\$100
industry="Industry3" Country Year I I Quarter Category State="CA" Month Week Product City Day			

Slice and Drill-Down				
	San Francisco	San Jose	Los Angeles	
Product1	\$20	\$160	\$20	
Product2	\$20	\$160	\$20	
Product3	\$60	\$480	\$60	
Industry Country Year Category="Category3" State="CA" Quarter Category3" State="CA" Month Week Product City Day				

Pivot To (City, Year)				
	San Francisco	San Jose	Los Angeles	
1997	\$20	\$100	\$20	
1998	\$20	\$600	\$20	
1999	\$60	\$100	\$60	
Industry Country Year Category="Category3" State="CA" Month Week Product City Day				

Multidimensional Data Analysis

Set of data manipulation operators

- Roll-up: Go up one step in a dimension hierarchy (e.g., month -> quarter)
- Drill-down: Go down one step in a dimension hierarchy (e.g., quarter -> month)
- Slice: Select a value of a dimension (e.g., all categories -> only Category3)
- Dice: Select range of values of a dimension (e.g., Year > 1999)
- Pivot: Select new dimensions to visualize the data (e.g., pivot to Time(quarter) and Customer(state))

The CUBE Operator

- Generalizing GROUP BY and aggregation
 - If there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.
- CUBE pid, locid, timeid BY SUM Sales
 - Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, timeid}; each roll-up corresponds to an SQL query of the form:

Lots of recent work on optimizing the CUBE operator!

SELECT SUM(S.sales) FROM Sales S

GROUP BY grouping-list

OLAP Server Architectures

- Relational OLAP (ROLAP)
 - Relational DBMS stores data mart (star schema) • OLAP middleware:

 - Aggregation and navigation logic
 Optimized for DBMS in the background, but slow and complex
- Multidimensional OLAP (MOLAP)
 - Specialized array-based storage structure
- Desktop OLAP (DOLAP)
 Performs OLAP directly at your PC
- Hybrids and Application OLAP

Summary: Multidimensional Analysis

- Spreadsheet style data analysis
- Roll-up, drill-down, slice, dice, and pivot your way to interesting cells in the CUBE
- Mainstream technology