
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Query Optimization

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Schema for Examples

Similar to old schema; rname added for variations.
Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Sailors:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Motivating Example

Cost: 500+500*1000 I/Os
By no means the worst plan!
But can do better (how?)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

snameRA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Page Nested Loops)

(On-the-fly)

(On-the-fly)Plan:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Alternative Plans 1
(No Indexes)

Main difference: push selects.
With 5 buffers, cost of plan:

Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).
Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
Total: 3560 page I/Os.

If we used BNL join, join cost = 10+4*250, total cost = 2770.
If we `push’ projections, T1 has only sid, T2 only sid and sname:

T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Alternative Plans 2
With Indexes

With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.
INL with pipelining (outer is not
materialized).

Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.
Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Overview of Query Optimization
Plan: Tree of R.A. ops, with choice of alg for each op.

Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next
output tuples, it `pulls’ on its inputs and computes them.

Two main issues:
For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
How is the cost of a plan estimated?

Ideally: Want to find best plan. Practically: Avoid
worst plans!
We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Outline

Relational algebra equivalences
Statistics and size estimation
Plan enumeration and cost estimation
Nested queries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Relational Algebra Equivalences
Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.
Selections: (Cascade)() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

()() ()()σ σ σ σc c c cR R1 2 2 1≡ (Commute)

Projections: () ()()()π π πa a anR R1 1≡ . . . (Cascade)

Joins: ><R (S T) (R S) T>< >< ><≡ (Associative)

><(R S) (S R) >< ≡ (Commute)

R (S T) (T R) SShow that: ≡>< >< >< ><

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

More Equivalences

A projection commutes with a selection that only
uses attributes retained by the projection.
Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.
A selection on just attributes of R commutes with
R S. (i.e., (R S) (R) S)
Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

>< σ >< ><σ≡
><

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Outline

Relational algebra equivalences
Statistics and size estimation
Plan enumeration and cost estimation
Nested queries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Example Plan

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Statistics and Catalogs

Need information about the relations and indexes
involved. Catalogs typically contain at least:

tuples (NTuples) and # pages (NPages) for each relation.
distinct key values (NKeys) and NPages for each index.
Index height, low/high key values (Low/High) for each
tree index.

Catalogs updated periodically.
Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Example Plan

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Size Estimation and Reduction Factors

Consider a query block:
What is maximum # tuples possible in result?
Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

Implicit assumption that terms are independent!
Term col=value has RF 1/NKeys(I), given index I on col
Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Reduction Factors & Histograms

For better estimation, use a histogram

equiwidthNo. of Values 2 3 3 1 8 2 1
Value 0-.99 1-1.99 2-2.99 3-3.99 4-4.99 5-5.99 6-6.99

No. of Values 2 3 3 3 3 2 4
Value 0-.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

equidepth

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Outline

Relational algebra equivalences
Statistics and size estimation
Plan enumeration and cost estimation
Nested queries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Enumeration of Alternative Plans
There are two main cases:

Single-relation plans
Multiple-relation plans

For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:

Each available access path (file scan / index) is considered,
and the one with the least estimated cost is chosen.
Pipelined to other selections, projections, aggregates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Queries Over Multiple Relations

Fundamental decision in System R: only left-deep join
trees are considered.

BA

C

D

BA

C

D

C DBA

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Queries Over Multiple Relations
Fundamental decision in System R: only left-deep join
trees are considered.

As the number of joins increases, the number of alternative
plans grows rapidly; we need to restrict the search space.
Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Enumeration of Left-Deep Plans
Left-deep plans differ only in the order of relations,
the access method for each relation, and the join
method for each join.
Enumerated using N passes (if N relations joined):

Pass 1: Find best 1-relation plan for each relation.
Pass 2: Find best way to join result of each 1-relation plan
(as outer) to another relation. (All 2-relation plans.)
Pass N: Find best way to join result of a (N-1)-relation plan
(as outer) to the N’th relation. (All N-relation plans.)

For each subset of relations, retain only:
Cheapest plan overall, plus
Cheapest plan for each interesting order of the tuples.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Example
Pass1:

Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).
Reserves: B+ tree on bid matches bid=500; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

Pass 2:
– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

e.g., Reserves as outer: Hash index can be used to get Sailors tuples
that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Enumeration of Plans (Contd.)

N-1 way plan not combined with a relation unless
there is a join condition between them

Unless all predicates in WHERE have been used up!
i.e., avoid Cartesian products if possible.
In spite of this pruning, plan space is still exponential in
tables

ORDER BY, GROUP BY, aggregates etc. handled as a
final step

Use an `interestingly ordered’ plan
Or use an additional sorting operator

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Example
Sailors:

Hash, B+ on sid
Reserves:

Clustered B+ tree on bid
B+ on sid

Boats
B+, Hash on color

Reserves

Sailors

sid=sid

Boats

Sid, COUNT(*) AS numbes

Select S.sid, COUNT(*) AS numbes
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
GROUP BY S.sid

GROUPBY sid

bid=bid

Color=red

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Pass 1

Best plan for accessing each relation
regarded as the first relation in an
execution plan

Reserves, Sailors: File Scan
Boats: B+ tree & Hash on color

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Pass 2

For each of the plans in pass 1, generate plans
joining another relation as the inner, using all
join methods

File Scan Reserves (outer) with Boats (inner)
File Scan Reserves (outer) with Sailors (inner)
File Scan Sailors (outer) with Boats (inner)
File Scan Sailors (outer) with Reserves (inner)
Boats hash on color with Sailors (inner)
Boats Btree on color with Sailors (inner)
Boats hash on color with Reserves (inner)
Boats Btree on color with Reserves (inner)

Retain cheapest plan for each pair of relations
Also “interesting order” plans even if they are not cheapest

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Pass 3

For each of the plans retained from Pass 2, taken
as the outer, generate plans for the inner join

eg Boats hash on color with Reserves (bid) (inner) (sortmerge))
inner Sailors (B-tree sid) sort-merge

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Add cost of aggregate

Cost to sort the result by sid, if not returned
sorted

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Outline

Relational algebra equivalences
Statistics and size estimation
Plan enumeration and cost estimation
Nested queries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Nested Queries

Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.
Outer block is optimized with
the cost of `calling’ nested block
computation taken into account.
Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value
Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

