N\

Tree-Structured Indexes

Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Introduction

< As for any index, 3 alternatives for data entries k*:
@ Data record with key value k
@ <k, rid of data record with search key value k>
@ <K, list of rids of data records with search key k>
< Choice is orthogonal to the indexing technique
used to locate data entries k*.
« Tree-structured indexing techniques support
both range searches and equality searches.
% ISAM: static structure; B+ free: dynamic,
adjusts gracefully under inserts and deletes.

Database Management Systems, R. Ramakrishnan and . Gehrke 2

\Runge Searches

% “Find all students with gpa > 3.0”

- If data entries are sorted, do binary search to find
first such student, then scan to find others.

< Problem?

“ Page 1 H Page 2 H Page 3 ‘ Page N ‘ Data (Entries) File

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

\Range Searches

< Simple idea: Create an “index’ file

- What is search cost if each index page has F entries?

1 .
K1 k2 ‘ ‘ ‘ ‘ KN H Index File
|

N

H Page 1 H Page 2 H Page 3 ‘ Page N ‘ Data File

B4 Can do binary search on (smaller) index file!

Database Management Systems, R. Ramakrishnan and J. Gehrke

index entrx

\ISAM i - G |

o

+ Index file may still be quite large. But we can
apply the idea repeatedly!

Non-leaf
Pages

Leaf \:r‘:'b \:r‘:'b :{--b - |:(b
Pages I:ID overton X I:ID v p <

page

Prl\ma/ry’pages
D4 Leaf pages contain data entries.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Example ISAM Tree

< Each node can hold 2 entries

- What is search cost if each leaf node can hold L
entries and each index node can hold F entries?

Root ~a

33 63+

o ‘

40* ‘ 46*

51* ‘ 55*

o ‘

Database Management Systems, R. Ramakrishnan and J. Gehrke

After Inserting 23%, 48%, 41%, 42*

Root ~a
Index
Pages
20|33 51| (63
!
[
Primary / \ / \¥ \
et ‘10* 15+ lzo* 2 ‘33* 3 {40* 46* ‘51* 55+ ‘63* o7+
Pages \ \
Pages
Database Management Systems, R. Ramakrishnan and J. Gehrke 7
... Then Deleting 42*
Index
Pages
20|33 51| (63
I
Primary / \ / \¥ \
Tl ‘10* 15+ {zo' 27+ ‘33~ 37+ {40' a6 ‘51* 55+ ‘63* o7+
Pages
Overflow 23
Pages
Database Management Systems, R. Ramakrishnan and J. Gehrke 8
... Then Deleting 51*
Index
Pages
20|33 51| (63
!
[
7 \ 71\
— ‘10' 15+ [20* 27+ ‘33* 378 {40* 46+ ‘51* 55 ‘53" o7+
Pages Y
Pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

\After Deleting 41* and 51*

Root ~a

=L
L

Pages

p— J/ \ 7/ T

Leaf

‘ 10* ‘ 15* ‘ l 20* | 27 ‘ ‘ 33* ‘ 37* ‘ \‘ 40* ‘ 46* ‘ 55’ ‘ ‘ 63* ‘ 97 ‘
Pages \ \
Overflow 48+ | 41+
Pages

P4 Note 51 appears in Index Page but not in Leaf pages!

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

B+ Tree: The Most Widely Used Index

« Insert/delete at log N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

< Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")
Database Management Systems, R. Ramakrishnan and J. Gehrke 11

\Example B+ Tree

% Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5%, 15%, all data entries >= 24* ...

Root \

T L T ey £
‘2* ‘3' ‘ 5¢ ‘ 7~‘ ‘14*‘16" ‘ ‘ ‘19"20' 22*‘ ‘ ‘24*‘27"29‘ ‘ ‘33~‘34~‘3s~‘39"

< Based on the search for 15*, we know it is not in the tree!

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

\B+—tree Search Performance

% Assume leaf pages can hold L data entries
< Assume B+-tree has order d
< Assume the tree has to index N data entries

< What is the best-case search performance
(measured in number of I/Os)?

< What is the worst-case search performance

Database Management Systems, R. Ramakrishnan and J. Gehrke

\B+ Trees in Practice

« Typical order: 100. Typical fill-factor: 67%.
- average fanout =133
« Typical capacities:
- Height 4: 133* = 312,900,700 records
- Height 3:133% = 2,352,637 records
< Can often hold top levels in buffer pool:
- Level1= 1page = 8Kbytes
- Level2= 133 pages= 1 Mbyte
- Level 3 =17,689 pages = 133 MBytes

Database Management Systems, R. Ramakrishnan and . Gehrke

\Inserting 23

F T
‘2*‘3"5"7*‘ ‘14“16*‘ ‘ ‘ ‘19*‘20*‘22"23*‘ ‘24«‘27*‘29*‘ ‘

Database Management Systems, R. Ramakrishnan and J. Gehrke

Inserting 8% ...

‘2~ 3 [[7 ‘w 16% ‘ H 197 20+ 22+ H24~ 27+[20" H33~ 34«]33* 30+
Database Management Systems, R. Ramakrishnan and J. Gehrke 16
Inserting 8% ...
copied
Root \
13 |17 || 24 || 30
2 3*(‘ ‘ ‘5' 8* ‘ ‘14* 16 ‘ H 197 20+ 22+ H24' 27+[29+ H33~ 34~Taa' 39+
Database Management Systems, R. Ramakrishnan and J. Gehrke 17
I] *
nserting 000 pushed
Root
5 || 13 24 || 30
S ‘ ‘ ‘5* S ‘ ‘w 16+ ‘ H 197 20+ 22+ Hzm 27+[29+ Hss* 34*{38* 39+

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Root grew

5 || 13 24 || 30
2 ‘ 3 ‘ ‘ ‘ ‘ 5 ‘ 7+ ‘ 8+ ‘ ‘ ‘14~|1e~‘ ‘ H 19*‘ 20*‘22‘ Hzm‘zw‘zg«‘ “33«‘34«[33*‘39‘
Database Management Systems, R. Ramakrishnan and J. Gehrke 19

\Inserting 8% ...
Root \

‘r ‘ 3 ‘ 5+ ‘7* ‘ ‘14"15'} ‘ H 19" 20"22*‘ H 24~‘27~‘29~‘ Haz*‘ar[as*‘se“

% In this example, could have “redistributed” to sibling
instead of splitting

% Not usually done in practice (Why?)

Database Management Systems, R. Ramakrishnan and . Gehrke 20

\Deleting 19% ...

Root

Ly e Y T T
O I i I S

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Deleting 20* ...

Root

5 13 24 30
> |3 ‘ ‘ ‘5~ 7| 8 ‘ ‘w 16% ‘ H ‘20* 22+ ‘zm 27+[29* H33~ 34«[33* 30+
Database Management Systems, R. Ramakrishnan and J. Gehrke 2
Deleting 20* ...
Root
> |3 ‘ ‘ ‘5' 8* ‘ ‘14* 16* ‘ H ‘ ‘22* H24' 27+[29+ H33~ 34~[3a' 39+
Database Management Systems, R. Ramakrishnan and J. Gehrke 23
After Deleting 20*
Root
copied
S ‘ ‘ ‘5* S ‘ ‘14' 16+ ‘ H 22 24+ ‘ sz 29 ‘ Has* 34*{38* 39+

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Deleting 24* ...

Root

5 13 27 30
> |3 ‘ ‘ ‘5~ 7| 8 ‘ ‘w 16% ‘ H 22 24 ‘ Hz7~ 29+ ‘ H33~ 34«[33* 30
Database Management Systems, R. Ramakrishnan and J. Gehrke 25
Deleting 24* ...
Root
> |3 ‘ ‘ ‘5' ars ‘ ‘14* 16 ‘ H 22] ‘ ‘ ‘27' 29% ‘ H33~ 34~[3a' 39+
Database Management Systems, R. Ramakrishnan and J. Gehrke 2
Deleting 24* ...
Root
deleted
Ly e T
S ‘ ‘ ‘5* 7|8 ‘ ‘14' 16* ‘ ‘ ‘22x 27+] 207 Has* 34*[38* 39"

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

\Deleting 24* ...

pulled down

RDN

o Py A L N L £
O Y O = e S | R E
Database Management Systems, R. Ramakrishnan and J. Gehrke 28

\Example of Non-leaf Re-distribution

% During deletion of 24*
< In contrast to previous example, can re-distribute
entry from left child of root to right child.

Root

=L
L= =11 =L 1T
e

* a X L e 'S
(5 0 D O 5 |

Database Management Systems, R. Ramakrishnan and . Gehrke 29

\After Re-distribution

+ Entries are re-distributed by “pushing through’ the
splitting entry in the parent node.

< Suffices to re-distribute index entry with key 20;
we've re-distributed 17 as well for illustration.

Root

" P - " - Camm

(2] [J[=]r[o] Jaeio] T][orfio] | Joofef T Jfeferfsf Jffucfofe]
Database Management Systems, R. Ramakrishnan and J. Gehrke 30

\Composite Search Keys

Pl

al (@,3)*

0 2)ﬂ ‘(b 6)*(d. 3) (e.4)" ‘(e 8)*(9.3) 3

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

\Composite Search Keys

% B+-tree index on (Age, Salary)
+ Which can you answer efficiently using a B+-tree?
- Age=20
- Age>20
- Age = 20, Salary = 100000
- Age > 20, Salary = 100000
- Age = 20, Salary > 100000
- Age > 20, Salary > 100000
%+ Assume B+-tree index on (Age, Salary, Bonus); which
can you answer efficiently?
- Age =20, Salary = 100000, Bonus > 5000
- Age = 20, Salary > 100000, Bonus > 5000

Database Management Systems, R. Ramakrishnan and . Gehrke 32

\Preﬁx Key Compression

< Important to increase fan-out (Why?)
< Key values in index entries only “direct traffic’;
can often compress them

- E.g., adjacent index entries with search key values
Dannon Yogurt, David Smith and Devarakonda Murthy

- We can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

% Is this correct?
- Not quite! What if there is a data entry Davey Jones?

- Compressed key should be greater than every entry in left sub-tree

- Insert/delete modified appropriately

Database Management Systems, R. Ramakrishnan and J. Gehrke 33

\A Note on "Order’

% Order (d) concept replaced by physical space
criterion in practice (“at least half-full’).

- Index pages can typically hold many more entries
than leaf pages.

- Variable sized records and search keys mean different
nodes will contain different numbers of entries.

- Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Management Systems, R. Ramakrishnan and J. Gehrke 34

\Bulk Loading of a B+ Tree

+ If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

% Bulk Loading can be done much more efficiently.

« Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Ro&

Sorted pages of data entries; not yet in B+ tree

Database Management Systems, R. Ramakrishnan and . Gehrke 3

Bulk Loading (Contd.)

o[]]
< Index entries for leaf |

pages always 5 - T Data entry pages
. . not yet in B+ tree

entered into right-

most index page just

above leaf level.
When this fills up, it
splits. (Split may go
up right-most path
to the root.)

% Much faster than
repeated inserts,
especially when one

considers locking!
Database) Systems, R BakfaktZheds

Data entry pages
not yet in B+ tree

\Summary of Bulk Loading

« Option 1: multiple inserts.

- Slow.

- Does not give sequential storage of leaves.
< Option 2: Bulk Loading

- Has advantages for concurrency control.

- Fewer I/Os during build.

- Leaves will be stored sequentially (and linked, of
course).

- Can control “fill factor” on pages.

Database Management Systems, R. Ramakrishnan and J. Gehrke

