
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Tree-Structured Indexes
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Introduction

As for any index, 3 alternatives for data entries k*:
Data record with key value k
<k, rid of data record with search key value k>
<k, list of rids of data records with search key k>

Choice is orthogonal to the indexing technique 
used to locate data entries k*.
Tree-structured indexing techniques support 
both range searches and equality searches.
ISAM:  static structure; B+ tree:  dynamic, 
adjusts gracefully under inserts and deletes.
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Range Searches

``Find all students with gpa > 3.0’’
– If data entries are sorted, do binary search to find 

first such student, then scan to find others.
Problem?

Page 1 Page 2 Page NPage 3 Data (Entries) File
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Range Searches

Simple idea:  Create an `index’ file
– What is search cost if each index page has F entries?

Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File
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ISAM

Index file may still be quite large.  But we can 
apply the idea repeatedly!

Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow 

page
Primary pages

Leaf
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Example ISAM Tree
Each node can hold 2 entries
– What is search cost if each leaf node can hold L 

entries and each index node can hold F entries?

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root
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After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

42*
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… Then Deleting 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

42*
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… Then Deleting 51*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*
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After Deleting 41* and 51*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

Note 51 appears in Index Page but not in Leaf pages!
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B+ Tree:  The Most Widely Used Index
Insert/delete at log F N cost; keep tree height-
balanced.   (F = fanout, N = # leaf pages)
Minimum 50% occupancy (except for root).  Each 
node contains d <=  m <= 2d entries.  The 
parameter d is called the order of the tree.
Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)
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Example B+ Tree

Search begins at root, and key comparisons 
direct it to a leaf (as in ISAM).
Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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B+-tree Search Performance

Assume leaf pages can hold L data entries
Assume B+-tree has order d
Assume the tree has to index N data entries

What is the best-case search performance 
(measured in number of I/Os)?
What is the worst-case search performance
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B+ Trees in Practice

Typical order: 100.  Typical fill-factor: 67%.
– average fanout = 133

Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 =     2,352,637 records

Can often hold top levels in buffer pool:
– Level 1 =           1 page  =     8 Kbytes
– Level 2 =      133 pages =     1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Inserting 23*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

23*
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Inserting 8* …

Root

17 24 30

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

7*
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Inserting 8* …

Root

17 24 30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

5

Entry to be inserted in parent node
(Note that 5 is copied up and
continues to appear in the leaf)
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Inserting 8* …

Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Entry to be inserted in parent node
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with leaf split)
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After Inserting 8*
Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Note how tree grew
by one level!
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Inserting 8* …
Root

17 24 30

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

7*

In this example, could have “redistributed” to sibling 
instead of splitting
Not usually done in practice (Why?)
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Deleting 19* …
Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17
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Deleting 20* …
Root

30

5* 7* 8* 14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17
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Deleting 20* …
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17
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After Deleting 20*
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17 Redistribution: note how
entry is copied up
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Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17
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Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17
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Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 27* 33* 34* 38* 39*2* 3*

135

17

29*

Merge: note how
entry is deleted



Database Management Systems, R. Ramakrishnan and J. Gehrke 28

Deleting 24* …

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Merge: note how entry
is pulled down (contrast
with merge of leaf node)
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Example of Non-leaf Re-distribution

During deletion of 24*
In contrast to previous example, can re-distribute 
entry from left child of root to right child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*
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After Re-distribution

Entries are re-distributed by `pushing through’ the 
splitting entry in the parent node.
Suffices to re-distribute index entry with key 20; 
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22
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Composite Search Keys

(a,1)* (a,3)*(b,2)* (b,6)*(d,3)*(e,4)* (e,8)* (g,3)*

(b,6) (e,8)
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Composite Search Keys

B+-tree index on (Age, Salary)
Which can you answer efficiently using a B+-tree?
– Age = 20
– Age > 20
– Age = 20, Salary = 100000
– Age > 20, Salary = 100000
– Age = 20, Salary > 100000
– Age > 20, Salary > 100000

Assume B+-tree index on (Age, Salary, Bonus); which 
can you answer efficiently?
– Age = 20, Salary = 100000, Bonus > 5000
– Age = 20, Salary > 100000, Bonus > 5000
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Prefix Key Compression

Important to increase fan-out  (Why?)
Key values in index entries only `direct traffic’; 
can often compress them

– E.g., adjacent index entries with search key values 
Dannon Yogurt, David Smith and Devarakonda Murthy

– We can abbreviate David Smith to Dav.  (The other 
keys can be compressed too ...)

Is this correct?
– Not quite! What if there is a data entry Davey Jones?

– Compressed key should be greater than every entry in left sub-tree
– Insert/delete modified appropriately
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A Note on `Order’

Order (d) concept replaced by physical space 
criterion in practice (`at least half-full’).

– Index pages can typically hold many more entries 
than leaf pages.

– Variable sized records and search keys mean different 
nodes will contain different numbers of entries.

– Even with fixed length fields, multiple records with 
the same search key value (duplicates) can lead to 
variable-sized data entries (if we use Alternative (3)).
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Bulk Loading of a B+ Tree
If we have a large collection of records, and we 
want to create a B+ tree on some field, doing so 
by repeatedly inserting records is very slow.
Bulk Loading can be done much more efficiently.
Initialization:  Sort all data entries, insert pointer 
to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root
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Bulk Loading (Contd.)

Index entries for leaf 
pages always 
entered into right-
most index page just 
above leaf level.  
When this fills up, it 
splits.  (Split may go 
up right-most path 
to the root.)
Much faster than 
repeated inserts, 
especially when one 
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages 
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Summary of Bulk Loading

Option 1: multiple inserts.
– Slow.
– Does not give sequential storage of leaves.

Option 2: Bulk Loading
– Has advantages for concurrency control.
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of 

course).
– Can control “fill factor” on pages.


