
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Tree-Structured Indexes

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Introduction

As for any index, 3 alternatives for data entries k*:
Data record with key value k
<k, rid of data record with search key value k>
<k, list of rids of data records with search key k>

Choice is orthogonal to the indexing technique
used to locate data entries k*.
Tree-structured indexing techniques support
both range searches and equality searches.
ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Range Searches

``Find all students with gpa > 3.0’’
– If data entries are sorted, do binary search to find

first such student, then scan to find others.
Problem?

Page 1 Page 2 Page NPage 3 Data (Entries) File

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Range Searches

Simple idea: Create an `index’ file
– What is search cost if each index page has F entries?

Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

ISAM

Index file may still be quite large. But we can
apply the idea repeatedly!

Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Example ISAM Tree
Each node can hold 2 entries
– What is search cost if each leaf node can hold L

entries and each index node can hold F entries?

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

42*

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

… Then Deleting 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

42*

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

… Then Deleting 51*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

After Deleting 41* and 51*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40

Root

41*Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 48*

Note 51 appears in Index Page but not in Leaf pages!

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

B+ Tree: The Most Widely Used Index
Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)
Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.
Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Example B+ Tree

Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).
Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

B+-tree Search Performance

Assume leaf pages can hold L data entries
Assume B+-tree has order d
Assume the tree has to index N data entries

What is the best-case search performance
(measured in number of I/Os)?
What is the worst-case search performance

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

B+ Trees in Practice

Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Inserting 23*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

23*

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Inserting 8* …

Root

17 24 30

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

7*

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Inserting 8* …

Root

17 24 30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

5

Entry to be inserted in parent node
(Note that 5 is copied up and
continues to appear in the leaf)

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Inserting 8* …

Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Entry to be inserted in parent node
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with leaf split)

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

After Inserting 8*
Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Note how tree grew
by one level!

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Inserting 8* …
Root

17 24 30

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

7*

In this example, could have “redistributed” to sibling
instead of splitting
Not usually done in practice (Why?)

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Deleting 19* …
Root

30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Deleting 20* …
Root

30

5* 7* 8* 14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Deleting 20* …
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

24

2* 3*

135

17

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

After Deleting 20*
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17 Redistribution: note how
entry is copied up

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

Deleting 24* …
Root

30

5* 7* 8* 14* 16* 22* 27* 33* 34* 38* 39*2* 3*

135

17

29*

Merge: note how
entry is deleted

Database Management Systems, R. Ramakrishnan and J. Gehrke 28

Deleting 24* …

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Merge: note how entry
is pulled down (contrast
with merge of leaf node)

Database Management Systems, R. Ramakrishnan and J. Gehrke 29

Example of Non-leaf Re-distribution

During deletion of 24*
In contrast to previous example, can re-distribute
entry from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

Database Management Systems, R. Ramakrishnan and J. Gehrke 30

After Re-distribution

Entries are re-distributed by `pushing through’ the
splitting entry in the parent node.
Suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

Composite Search Keys

(a,1)* (a,3)*(b,2)* (b,6)*(d,3)*(e,4)* (e,8)* (g,3)*

(b,6) (e,8)

Database Management Systems, R. Ramakrishnan and J. Gehrke 32

Composite Search Keys

B+-tree index on (Age, Salary)
Which can you answer efficiently using a B+-tree?
– Age = 20
– Age > 20
– Age = 20, Salary = 100000
– Age > 20, Salary = 100000
– Age = 20, Salary > 100000
– Age > 20, Salary > 100000

Assume B+-tree index on (Age, Salary, Bonus); which
can you answer efficiently?
– Age = 20, Salary = 100000, Bonus > 5000
– Age = 20, Salary > 100000, Bonus > 5000

Database Management Systems, R. Ramakrishnan and J. Gehrke 33

Prefix Key Compression

Important to increase fan-out (Why?)
Key values in index entries only `direct traffic’;
can often compress them

– E.g., adjacent index entries with search key values
Dannon Yogurt, David Smith and Devarakonda Murthy

– We can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

Is this correct?
– Not quite! What if there is a data entry Davey Jones?

– Compressed key should be greater than every entry in left sub-tree
– Insert/delete modified appropriately

Database Management Systems, R. Ramakrishnan and J. Gehrke 34

A Note on `Order’

Order (d) concept replaced by physical space
criterion in practice (`at least half-full’).

– Index pages can typically hold many more entries
than leaf pages.

– Variable sized records and search keys mean different
nodes will contain different numbers of entries.

– Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Management Systems, R. Ramakrishnan and J. Gehrke 35

Bulk Loading of a B+ Tree
If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.
Bulk Loading can be done much more efficiently.
Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Database Management Systems, R. Ramakrishnan and J. Gehrke 36

Bulk Loading (Contd.)

Index entries for leaf
pages always
entered into right-
most index page just
above leaf level.
When this fills up, it
splits. (Split may go
up right-most path
to the root.)
Much faster than
repeated inserts,
especially when one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 37

Summary of Bulk Loading

Option 1: multiple inserts.
– Slow.
– Does not give sequential storage of leaves.

Option 2: Bulk Loading
– Has advantages for concurrency control.
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of

course).
– Can control “fill factor” on pages.

