
Database Management System, R. Ramakrishnan and J. Gehrke 1

Storing Data: Disks and Files

Database Management System, R. Ramakrishnan and J. Gehrke 2

Storing and Retrieving Data

v Database Management Systems need to:
– Store large volumes of data
– Store data reliably (so that data is not lost!)
– Retrieve data efficiently

v Alternatives for storage
– Main memory
– Disks
– Tape

Database Management System, R. Ramakrishnan and J. Gehrke 3

Why Not Store Everything in Main Memory?

v Costs too much. $100 will buy you either 2GB
of RAM (similar for flash memory) or 400GB
of disk today.

v Main memory is volatile. We want data to be
saved between runs. (Obviously!)
– Flash memory is non-volatile

Database Management System, R. Ramakrishnan and J. Gehrke 4

Why Not Store Everything in Tapes?

v No random access. Data has to be accessed
sequentially
– Not a great idea when accessing a small portion of

a terabyte of data
v Slow! Data access times are larger than for

disks

Database Management System, R. Ramakrishnan and J. Gehrke 5

Disks

v Secondary storage device of choice
– Cheap
– Stable storage medium
– Random access to data

v Main problem
– Data read/write times much larger than for main

memory
– Positioning time in order of milliseconds

u How many instructions could a 3 GHz CPU process
during that time…

Database Management System, R. Ramakrishnan and J. Gehrke 6

Solution 1: Techniques for making
disks faster

v Intelligent data layout on disk
– Put related data items together

v Redundant Array of Inexpensive Disks (RAID)
– Achieve parallelism by using many disks

Database Management System, R. Ramakrishnan and J. Gehrke 7

Solution 2: Buffer Management

v Keep “currently used” data in main memory
– How do we do this efficiently?

v Typical (simplified) storage hierarchy:
– Main memory (RAM) for currently used data
– Disks for the main database (secondary storage)
– Tapes for archiving older versions of the data (tertiary

storage)

Database Management System, R. Ramakrishnan and J. Gehrke 8

Outline

v Disk technology and how to make disk
read/writes faster

v Buffer management
v Storing “database files” on disk

Database Management System, R. Ramakrishnan and J. Gehrke 9

Components of a Disk

Platters

v The platters spin (say, 10K rpm).

Spindle

v The arm assembly is
moved in or out to position
a head on a desired track.
Tracks under heads make
a cylinder (imaginary!).

Disk head

Arm movement

Arm assembly

v Only one head
reads/writes at any
one time.

Tracks

Sector

v Block size is a multiple
of sector size (which is fixed).

Database Management System, R. Ramakrishnan and J. Gehrke 10

Accessing a Disk Page

v Time to access (read/write) a disk block:
– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)
– transfer time (actually moving data to/from disk surface)

v Seek time and rotational delay dominate.
– Seek time varies from about 1 to 20msec
– Rotational delay varies from 0 to 10msec
– Transfer rate is about 0.1-0.5msec per 4KB page

v Key to lower I/O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

Database Management System, R. Ramakrishnan and J. Gehrke 11

Arranging Pages on Disk

v `Next’ block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

v Blocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

v For a sequential scan, pre-fetching several
pages at a time is a big win!

Database Management System, R. Ramakrishnan and J. Gehrke 12

RAID

v Redundant Array of Inexpensive Disks
– A.k.a. Redundant Array of Independent Disks

v Disk Array: Arrangement of several disks that gives
abstraction of a single, large disk.

v Goals: Increase performance and reliability.
v Two main techniques:

– Data striping: Data is partitioned; size of a partition is called
the striping unit. Partitions are distributed over several
disks.

– Redundancy: More disks -> more failures. Redundant
information allows reconstruction of data if a disk fails. Two
main approaches: parity and mirroring.

Database Management System, R. Ramakrishnan and J. Gehrke 13

Parity

v Add 1 redundant block for every n blocks of
data
– XOR of the n blocks

v Example: D1, D2, D3, D4 are data blocks
– Compute DP as D1 XOR D2 XOR D3 XOR D4
– Store D1, D2, D3, D4, DP on different disks
– Can recover any one of them from the other four

by XORing them

Database Management System, R. Ramakrishnan and J. Gehrke 14

RAID Levels

v Level 0: No redundancy
– Striping without parity

v Level 1: Mirrored (two identical copies)
– Each disk has a mirror image (check disk)
– Parallel access: reduces positioning time, but

transfer only from one disk.
u Maximum transfer rate = transfer rate of one disk

– Write involves two disks.

Database Management System, R. Ramakrishnan and J. Gehrke 15

RAID Levels (Contd.)

v Level 0+1: Striping and
Mirroring

– Parallel reads.
– Write involves two disks.
– Maximum transfer rate

= aggregate bandwidth
– Combines performance of RAID 0

with redundancy of RAID 1.
v Example: 8 disks

– Divide into two sets of 4 disks
– Each set is a RAID 0 array
– One set mirrors the other

Database Management System, R. Ramakrishnan and J. Gehrke 16

RAID Levels (Contd.)
v Level 3: Bit-Interleaved Parity

– Striping Unit: One bit. One check disk.
– Each read and write request involves all disks; disk

array can process one request at a time.

Database Management System, R. Ramakrishnan and J. Gehrke 17

RAID Levels (Contd.)
v Level 4: Block-Interleaved Parity

– Striping Unit: One disk block. One check disk.
– Parallel reads possible for small requests, large

requests can utilize full bandwidth
– Writes involve modified block and check disk

Database Management System, R. Ramakrishnan and J. Gehrke 18

RAID Levels (Contd.)
v Level 5: Block-Interleaved Distributed Parity

– Similar to RAID Level 4, but parity blocks are
distributed over all disks

– Eliminates check disk bottleneck, one more disk for
higher read parallelism

Database Management System, R. Ramakrishnan and J. Gehrke 19

In-Class Exercise

v How does the striping granularity (size of a
stripe) affect performance, e.g., RAID 3 vs.
RAID 4?

Database Management System, R. Ramakrishnan and J. Gehrke 20

In-Class Exercise

v How does the striping granularity (size of a stripe)
affect performance, e.g., RAID 3 vs. RAID 4?

v Smaller stripe -> file is broken into more and smaller
pieces -> small files are distributed over more disks -
> faster transfer when reading that file (parallel I/O)

v Disadvantage: when reading multiple files, each disk
has more requests, leading to worse positioning time
(seek + rotational delay)

v Write performance: need not (!) read whole stripe to
re-compute parity
– NewParity = (OldData XOR NewData) XOR OldParity

Database Management System, R. Ramakrishnan and J. Gehrke 21

Which RAID to Choose?

v RAID 0: great performance at low cost, limited
reliability

v RAID 0+1 (better than 1): small storage subsytems
(cost of mirroring limited), or when write
performance matters

v RAID 3 (better than 2): large transfer requests of
contiguous blocks, bad for small requests of single
blocks

v RAID 5 (better than 4): good general-purpose
solution

Database Management System, R. Ramakrishnan and J. Gehrke 22

Which RAID to Choose? Corrected.

v RAID 0: great performance at low cost,
limited reliability

v RAID 0+1 (better than 1): small storage
subsytems (cost of mirroring limited), or
when write performance matters

v RAID 5 (better than 3, 4): good general-
purpose solution

Database Management System, R. Ramakrishnan and J. Gehrke 23

RAID Comparison
(www.storagereview.com)

This is just a rule-of-thumb comparison: don’t worry
about half a star difference, RAID 3 is overrated etc.

Database Management System, R. Ramakrishnan and J. Gehrke 24

Disk Space Management

v Lowest layer of DBMS software manages space
on disk.

v Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

v Request for a sequence of pages must be satisfied
by allocating the pages sequentially on disk!
Higher levels don’t need to know how this is
done, or how free space is managed.

Database Management System, R. Ramakrishnan and J. Gehrke 25

Outline

v Disk technology and how to make disk
read/writes faster

v Buffer management
v Storing “database files” on disk

Database Management System, R. Ramakrishnan and J. Gehrke 26

Buffer Management in a DBMS

v Data must be in RAM for DBMS to operate on it!
v Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Database Management System, R. Ramakrishnan and J. Gehrke 27

When a Page is Requested ...

v If requested page is not in pool:
– Choose a frame for replacement
– If frame is dirty, write it to disk
– Read requested page into chosen frame

v Pin the page and return its address.

* If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

Database Management System, R. Ramakrishnan and J. Gehrke 28

More on Buffer Management

v Requestor of page must unpin it, and indicate
whether page has been modified:

– dirty bit is used for this.
v Page in pool may be requested many times,

– a pin count is used. A page is a candidate for
replacement iff pin count = 0.

v CC & recovery may entail additional I/O
when a frame is chosen for replacement.
(Write-Ahead Log protocol; more later.)

Database Management System, R. Ramakrishnan and J. Gehrke 29

In Class Exercise

v What happens if the buffer is full and all
frames have pin count > 0?

v What happens if multiple transactions (users)
want to access the same page?

Database Management System, R. Ramakrishnan and J. Gehrke 30

Buffer Replacement Policy

v Frame is chosen for replacement by a
replacement policy:

– Least-recently-used (LRU): priority queue based
on last access to frame (time when pin count goes
to 0)

– Clock: round-robin replacement with referenced bit
– Many others

u First-in-first-out (FIFO), Most-recently-used (MRU),
Random

Database Management System, R. Ramakrishnan and J. Gehrke 31

Buffer Replacement Policy (Contd.)

v Policy can have big impact on # of I/O’s;
depends on the access pattern.

v Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.

– # buffer frames < # pages in file means each page
request causes an I/O.

– Which replacement policy is better?

Database Management System, R. Ramakrishnan and J. Gehrke 32

DBMS vs. OS File System
OS does disk space & buffer mgmt: why not let
OS manage these tasks?

v Differences in OS support: portability issues
v Some limitations, e.g., files can’t span disks.
v Buffer management in DBMS requires ability to:

– pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

– adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

Database Management System, R. Ramakrishnan and J. Gehrke 33

Outline

v Disk technology and how to make disk
read/writes faster

v Buffer management
v Storing “database files” on disk

Database Management System, R. Ramakrishnan and J. Gehrke 34

Files of Records

v Page or block is OK when doing I/O, but
higher levels of DBMS operate on records, and
files of records.

v FILE: A collection of pages, each containing a
collection of records. Must support:

– insert/delete/modify record
– read a particular record (specified using record id)
– scan all records (possibly with some conditions on

the records to be retrieved)

Database Management System, R. Ramakrishnan and J. Gehrke 35

Record Formats: Fixed Length

v Information about field types same for all
records in a file; stored in system catalogs.

v Finding i’th field requires scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Database Management System, R. Ramakrishnan and J. Gehrke 36

Record Formats: Variable Length
v Two alternative formats (# fields is fixed):

* Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

Database Management System, R. Ramakrishnan and J. Gehrke 37

Page Formats: Fixed Length Records

Slot 1
Slot 2

Slot N

. . .

N

PACKED

Free
Space

number
of records

Database Management System, R. Ramakrishnan and J. Gehrke 38

Page Formats: Fixed Length Records

. . .

M10. . .
M ... 3 2 1

UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of slots

Database Management System, R. Ramakrishnan and J. Gehrke 39

Page Formats: Variable Length Records

* Can move records on page without changing rid;
so, attractive for fixed-length records too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Database Management System, R. Ramakrishnan and J. Gehrke 40

Unordered (Heap) Files

v Simplest file structure contains records in no
particular order.

v As file grows and shrinks, disk pages are
allocated and de-allocated.

v To support record level operations, we must:
– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

v There are many alternatives for keeping track
of this.

Database Management System, R. Ramakrishnan and J. Gehrke 41

Heap File Implemented as a List

v The header page id and Heap file name must
be stored someplace.

v Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Database Management System, R. Ramakrishnan and J. Gehrke 42

Heap File Using a Page Directory

v The entry for a page can include the number
of free bytes on the page.

v The directory is a collection of pages; linked
list implementation is just one alternative.

– Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Database Management System, R. Ramakrishnan and J. Gehrke 43

Indexes

v A Heap file allows us to retrieve records:
– by specifying the rid

u Usually <page id, slot number>, or some integer (need lookup
table for corresponding page id and slot number)

– by scanning all records sequentially
v Sometimes, we want to retrieve records by

specifying the values in one or more fields, e.g.,
– Find all CS students with a gpa > 3

v Indexes are file structures that enable us to
answer such value-based queries efficiently.

Database Management System, R. Ramakrishnan and J. Gehrke 44

System Catalogs
v For each index:

– structure (e.g., B+ tree) and search key fields
v For each relation:

– name, file name, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

v For each view:
– view name and definition

v Plus statistics, authorization, buffer pool size, etc.
* Catalogs are themselves stored as relations!

Database Management System, R. Ramakrishnan and J. Gehrke 45

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Database Management System, R. Ramakrishnan and J. Gehrke 46

Summary

v Disks provide cheap, non-volatile storage
v Buffer manager brings pages into RAM
v DBMS vs. OS File Support
v Fixed and Variable length records
v Slotted page organization

