Data Redundancy

Table:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- Application constraint: all sailors with the same rating have the same wage (R → W)
- Problems due to data redundancy?

Problems due to Data Redundancy

- **Update anomaly:** Can we change W in just the first tuple of SNLRWH?
- **Insertion anomaly:** What if we want to insert an employee and don't know the hourly wage for his rating?
- **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Solution?

Relation Decomposition

Table:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>Wages</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Modifying ER Diagram

Diagram:

- **Update anomaly:** Can we change W in just the first tuple of SNLRWH?
- **Insertion anomaly:** What if we want to insert an employee and don't know the hourly wage for his rating?
- **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Solution?
Normal Forms

- First question is to ask whether any schema refinement is needed
- If a relation is in a normal form (BCNF, 3NF etc.), certain anomalies are avoided/minimized
- If not, decompose relation to normal form
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - If X → Y and X → Z, then X → YZ
 - Armstrong’s Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If X ⊆ Y, then X → Y
 - Augmentation: If X → Y, then XZ → YZ for any Z
 - Transitivity: If X → Y and Y → Z, then X → Z
- These are sound and complete inference rules for FDs!

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs F. An efficient check:
 - Compute attribute closure of X (denoted X⁺) wrt F:
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺
- Does F = {A → B, B → C, C D → E} imply A → E? Equivalently, is E in A⁺?
 - Can be used to find keys!!!

Outline

- Functional Dependencies
- Decompositions
- Normal Forms
Outline

- Functional Dependencies
- Decompositions
- Normal Forms

Decomposition of a Relation Scheme

Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of one of the new relations.

Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

E.g., can decompose SNLRWH into SNLRH and RW.

Example Decomposition

Decompositions should be used only when needed.
- SNLRWH has FDs S \(\rightarrow \) SNLRWH and R \(\rightarrow \) W
- Data duplication due to second FD
- Will make this more precise during the definition of normal forms

Decompose to SNLRH and RW
- What should we be careful about?

Problems with Decompositions

There are three potential problems to consider:
- Some queries become more expensive.
 - e.g., How much did sailor Joe earn? (salary = W*H)
- Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
- Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.

Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:
- \(\pi_X(r) \supset \pi_Y(r) = r \)

It is always true that \(r \subseteq \pi_X(r) \supseteq \pi_Y(r) \)
- In general, the other direction does not hold! If it does, the decomposition is lossless-join.

Definition extended to decomposition into 3 or more relations in a straightforward way.

It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem 2.)

More on Lossless Join

The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
- \(X \cap Y \rightarrow X \), or
- \(X \cap Y \rightarrow Y \)

In particular, the decomposition of R into UV and R - V is lossless-join if \(U \rightarrow V \) holds over R.
Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP \(\rightarrow\) C and SD \(\rightarrow\) P.
 - Decomposition: CSJDQV and SDP
 - (Is it lossless join?)
 - Problem: Checking JP \(\rightarrow\) C requires a join!

Dependency preserving decomposition (Intuitive):

- If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem 13.1)

Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted \(F_X\)) is the set of FDs U \(\rightarrow\) V in \(F^+\) (closure of F) such that U, V are in X.

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if \((F_X \cup F_Y)^+ = F^+\)
 - i.e., if we consider only dependencies in the closure \(F^+\) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+\).
 - Important to consider \(F^+\), not F, in this definition:
 - ABC, A \(\rightarrow\) B, B \(\rightarrow\) C, C \(\rightarrow\) A, decomposed into AB and BC.
 - Is this dependency preserving? Is C \(\rightarrow\) A preserved?????

Dependency preserving does not imply lossless join:

- ABC, A \(\rightarrow\) B, decomposed into AB and BC.
 - And vice-versa! (Example?)

Outline

- Functional Dependencies
- Decompositions
- Normal Forms

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all X \(\rightarrow\) A in \(F^+\)
 - A \(\not\in\) X (called a trivial FD), or
 - X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
 - No dependency in R that can be predicted using FDs alone.
 - If we are shown two tuples that agree upon the X value, we cannot infer the A value in one tuple from the A value in the other.
 - If example relation is in BCNF, the 2 tuples must be identical (since X is a key).

Decomposition into BCNF

- Consider relation R with FDs F. If X \(\rightarrow\) Y violates BCNF, decompose R into R - Y and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, JP \(\rightarrow\) C, SD \(\rightarrow\) P, J \(\rightarrow\) S
 - To deal with SD \(\rightarrow\) P, decompose into SDP, CSJDQV
 - To deal with J \(\rightarrow\) S, decompose CSJDQV into JS and CJDQV
 - In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \(\rightarrow\) Z, Z \(\rightarrow\) C
 - Can’t decompose while preserving 1st FD; not in BCNF.
 - Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP \(\rightarrow\) C, SD \(\rightarrow\) P and J \(\rightarrow\) S).
 - However, it is a lossless join decomposition.
Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all
 - A \(\in\) X (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R.
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good" decomps, or performance considerations).
- Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by X \(\rightarrow\) A, one of the following holds:
 - X is a subset of some key K
 - We store (X, A) pairs redundantly.
 - X is not a proper subset of any key.
 - There is a chain of FDs K \(\rightarrow\) X \(\rightarrow\) A, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
 - But: even if reln is in 3NF, these problems could arise.
 - e.g., Reserves 5BDC, S \(\rightarrow\) C, C \(\rightarrow\) S is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomps into BCNF can be used to obtain a lossless join decomps into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If X \(\rightarrow\) Y is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to ‘preserve’ JP \(\rightarrow\) C. What if we also have J \(\rightarrow\) C?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.
- e.g., A \(\rightarrow\) B, ABCD \(\rightarrow\) E, EF \(\rightarrow\) GH, ACDF \(\rightarrow\) EG has the following minimal cover:
 - A \(\rightarrow\) B, ACD \(\rightarrow\) E, EF \(\rightarrow\) G and EF \(\rightarrow\) H

Summary of Schema Refinement

- BCNF implies free of redundancies due to FDs
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
- If a lossless-join, dependency preserving decomposition into BCNF is not possible, consider 3NF
- Decompositions should be carried out and/or re-examined keeping performance issues in mind