The Entity-Relationship Model

Chapter 2

Overview of Database Design

- Conceptual design: (ER Model is used at this stage.)
 - What are the entities and relationships in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the integrity constraints or business rules that hold?
 - A database 'schema' in the ER Model can be represented pictorially (ER diagrams).
 - Can map an ER diagram into a relational schema.

ER Model Basics

- Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes.
- Entity Set: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
 - Each entity set has a key.
 - Each attribute has a domain.
ER Model Basics (Contd.)

- **Relationship**: Association among two or more entities. E.g., Attishoo works in Pharmacy department.
- **Relationship Set**: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets $E_1 \ldots E_n$; each relationship in R involves entities $e_1 \ldots e_1 \ldots e_n \ldots E_n$.
 - Same entity set could participate in different relationship sets, or in different “roles” in same set.

Key Constraints

- Consider `Works_In`: An employee can work in many departments; a dept can have many employees.
- In contrast, each dept has at most one manager, according to the key constraint on `Manages`.

Participation Constraints

- Does every department have a manager?
 - If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial).
 - Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!)

Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (owner) entity.
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
 - Weak entity set must have total participation in this identifying relationship set.

ISA (‘is a’) Hierarchies

- As in C++, or other PLs, attributes are inherited.
- If we declare A ISA B, every A entity is also considered to be a B entity.
 - Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
 - Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entities that participate in a relationship.

Aggregation

- Used when we have to model a relationship involving (entity sets and) a relationship set.
 - Aggregation allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships.
 - Aggregation vs. ternary relationships:
 - Monitors is a distinct relationship, with a descriptive attribute.
 - Also, can say that each sponsorship is monitored by at most one employee.
Conceptual Design Using the ER Model

- Design choices:
 - Should a concept be modeled as an entity or an attribute?
 - Should a concept be modeled as an entity or a relationship?
 - Identifying relationships: Binary or ternary? Aggregation?

- Constraints in the ER Model:
 - A lot of data semantics can (and should) be captured.
 - But some constraints cannot be captured in ER diagrams.

Entity vs. Attribute

- Should address be an attribute of Employees or an entity (connected to Employees by a relationship)?
- Depends upon the use we want to make of address information, and the semantics of the data:
 - If we have several addresses per employee, address must be an entity (since attributes cannot be set-valued).
 - If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given city, address must be modeled as an entity (since attribute values are atomic).

Entity vs. Attribute (Contd.)

- Works_In2 does not allow an employee to work in a department for two or more periods.
- Similar to the problem of wanting to record several addresses for an employee: we want to record several values of the descriptive attributes for each instance of this relationship.
Entity vs. Relationship

- First ER diagram OK if a manager gets a separate discretionary budget for each dept.
- What if a manager gets a discretionary budget that covers all managed depts?
 - Redundancy of dbudget, which is stored for each dept managed by the manager. Misleading: suggests dbudget tied to managed dept.

Binary vs. Ternary Relationships

- If each policy is owned by just 1 employee:
 - Key constraint on Policies would mean policy can only cover 1 dependent!
- What are the additional constraints in the 2nd diagram?

Binary vs. Ternary Relationships (Contd.)

- Previous example illustrated a case when two binary relationships were better than one ternary relationship.
- An example in the other direction: a ternary relation Contracts relates entity sets Parts, Departments and Suppliers, and has descriptive attribute qty. No combination of binary relationships is an adequate substitute:
 - S “can-supply” P, D “needs” P, and D “deals-with” S does not imply that D has agreed to buy P from S.
 - How do we record qty?
Summary of Conceptual Design

❖ Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
❖ ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
❖ Basic constructs: entities, relationships, and attributes
 (of entities and relationships).
❖ Some additional constructs: weak entities, ISA hierarchies, and aggregation.
❖ Note: There are many variations on ER model.

Summary of ER (Contd.)

❖ Several kinds of integrity constraints can be expressed in the ER model: key constraints, participation constraints, and overlap/covering constraints for ISA hierarchies. Some foreign key constraints are also implicit in the definition of a relationship set.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
 - Constraints play an important role in determining the best database design for an enterprise.

Summary of ER (Contd.)

❖ ER design is subjective. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise.
 - Entity vs. attribute, entity vs. relationship, binary or n-ary relationship, whether or not to use ISA hierarchies, and whether or not to use aggregation.
❖ Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.