
Using metadata for interoperability

CS 431 February 28, 2007

Carl Lagoze – Cornell University

What is the problem?

• Getting heterogeneous systems to work together

• Providing the user with a seamless information
experience

• What services do you want to provide?
– Search and access?

– More?
• information access

• authorization and authentication

• integrity and reliability

• Reuse

• How much human intervention?

• Level of perfection?

Why is it hard

• Differences in…
– hardware

– applications

– design patterns

– language

– culture

– laws

– policies

– human behaviors

Interoperability is multidimensional

• Syntax
– XML

• Semantics
– RDF/RDFS/OWL

• Vocabularies/Ontologies
– Dublin Core/ABC/CIDOC-CRM

• Search and discovery
– Z39.50
– SDLIP
– ZING

• Protocols
– Dienst
– OAI-PMH

• Information models
– METS
– FEDORA
– DIDL

Contrast to Distributed Systems

• Distributed systems
– Collections of components at different sites that are

carefully designed to work with each other

• Heterogeneous or federated systems
– Cooperating systems in which individual components are

designed or operated autonomously

Web Search Strategies – Crawling and Automated Indexing

“central”
index

?

Definition

Spider = robot = crawler

Crawlers are computer programs that roam the
Web with the goal of automating specific tasks
related to the Web.

Crawlers and internet history

• 1991: HTTP

• 1992: 26 servers

• 1993: 60+ servers; self-register; archie

• 1994 (early) – first crawlers

• 1996 – search engines abound

• 1998 – focused crawling

• 1999 – web graph studies

• 2002 – use for digital libraries (focused crawling)

Metadata aggregation and harvesting

• Crawling is not always appropriate
– rights issues

– focused targets

– firewalls

– deep web

• Other applications than search
– Current awareness

– Preservation

– Summarization

– Complex/compound object structure (browsing, etc.)

The general model

Content
Provider

Content
Provider

Content
Provider

Content
Provider

Aggregator

<xml version

<root>

…

<xml version

<root>

…

<xml version

<root>

…

<xml version

<root>

…

XML
Format?

Transport
Protocol?

Syndication – RSS and Atom

• Format to expose news and content of news-like sites
– Wired

– Slashdot

– Weblogs

• “News” has very wide meaning
– Any dynamic content that can be broken down into discrete

items
• Wiki changes

• CVS checkins

• Roles
– Provider syndicates by placing an RSS-formated XML file on

Web

– Aggregator runs RSS-aware program to check feeds for
changes

RSS History

• Original design (0.90) for Netscape for building
portals of headlines to news sites
– Loosely RDF based

• Simplified for 0.91 dropping RDF connections

• RDF branch was continued with namespaces and
extensibility in RSS 1.0

• Non-RDF branch continued to 2.0 release

• Alternately called:
– Rich Site Summary

– RDF Site Summary

– Really Simple Syndication

RSS is in wide use

• All sorts of origins
– News

– Blogs

– Corporate sites

– Libraries

– Commercial

RSS components

• Channel
– single tag that encloses the main body of the RSS

document

– Contains metadata about the channel -title, link,
description, language, image

• Item
– Channel may contain multiple items

– Each item is a “story”

– Contains metadata about the story (title, description,
etc.) and possible link to the story

Simple RSS 2.0 Example

RSS 2.0 Example
- Namespaces

Atom

• Attempt to rationalize RSS 1.x, 2.x divergence

• Encoding is up-to-date with current XML
standards
– namespaces

– Schema

• Robust content model
– Distinguishes between metadata and content (plain text,

HTML, base-64 binary)

• Well-defined extensibility model

• IETF FRC 4287
– http://www.ietf.org/rfc/rfc4287

http://www.ietf.org/rfc/rfc4287

Simple Atom Feed

Atom with
namespaces

Atom Enclosures and
Content Support (podcast)

Automated discovery of RSS/ATOM feeds

What RSS doesn‟t have

• Notion of a “collection” – corpus of documents
that persist

• Technique for selectively requesting metadata
from parts of the collection

• Notion of multiple descriptive types

• These things are important for more “library-like”
corpora, e.g., museums, libraries, institutional
repositories

The Open Archives Initiative (OAI) and the Protocol for
Metadata Harvesting (OAI-PMH)

OAI

Where does the OAI fit?

Dspace

Fedora

Eprints

CiteSeer

Libraries
(LofC) arXiv

Internet
Archive

Museums

Google

National
Libraries

NSDL

OAI-PMH

Data Provider

(Repository)

Service

Provider

(Harvester)
Protocol requests (GET, POST)

XML metadata

 PMH -> Protocol for Metadata Harvesting
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

• Simple protocol, just 6 verbs

• Designed to allow harvesting of any XML (meta)data (schema described)

• For batch-mode not interactive use

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

OAI for discovery

R3

R4

R2

R1

User

Information islands

?

OAI for discovery

R3

R4

R2

R1

User

Metadata harvested by service

Search

service

Service layer

OAI for XYZ

R3

R4

R2

R1

User

Global network of resources exposing XML data

XYZ

service

Service layer

all available metadata
about this sculpture

item

Dublin Core
metadata

MARC21
metadata

branding
metadata records

item has
identifier

record has identifier + metadata format + datestamp

OAI-PMH Data Model

resource

Identifiers

• Items have identifiers (all records of same item share
identifier)

• Identifiers must have URI syntax identifiers must be
assumed to be local to the repository

• Complete identification of a record is
baseURL+identifier+metadataPrefix+datestamp

OAI-PMH verbs

FunctionVerb

listing of a single recordGetRecord

listing of N recordsListRecords

OAI unique ids contained in archiveListIdentifiers

sets defined by archiveListSets

metadata formats supported by archiveListMetadataFormats

description of archiveIdentify

metadata
about the
repository

harvesting
verbs

most verbs take arguments: dates, sets, ids, metadata formats
and resumption token (for flow control)

OAI-PMH and HTTP

• OAI-PMH uses HTTP as transport

– Encoding OAI-PMH in GET

• http://baseURL?verb=<verb>&arg1=<arg1Val>...

• Example: http://an.oa.org/OAIscript?

verb=GetRecord&

identifier=oai:arXiv.org:hep-th/9901001&

metadataPrefix=oai_dc

• Error handling

 all OK at HTTP level? => 200 OK

 something wrong at OAI-PMH level? => OAI-PMH error (e.g.
badVerb)

• HTTP codes 302 (redirect), 503 (retry-after), etc. still available to
implementers, but do not represent OAI-PMH events

OAI and Metadata Formats

• Protocol based on the notion that a record can be
described in multiple metadata formats

• Dublin Core is required for “interoperability”

OAI-PMH Responses

• All defined by one schema
– http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd“

• Generic Structure (Header and Body)

http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd

Generic Record Structure

Identify: Information about repository

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify

ListMetadataFormats: Available Formats

http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats

ListRecords: Retrieve Metadata Records

http://memory.loc.gov/cgi-

bin/oai2_0?verb=ListRecords&metadataP

refix=oai_dc&set=mussm

Error/exception response

http://memory.loc.gov/cgi-
bin/oai2_0?verb=ListRecords&metadataPrefix=WRONG

resumptionToken

• Protocol supports the notion of partial responses in a very simple way:

Response includes a „token‟ at the which is used to get the next chunk.

• Idempotency of resumptionToken: return same incomplete list when

resumptionToken is reissued

• while no changes occur in the repo: strict

• while changes occur in the repo: all items with unchanged datestamp

• optional attributes for the resumptionToken: expirationDate,

completeListSize, cursor

Selective Harvesting

• RSS is mainly a “tail” format

• OAI-PMH is more “grep” like

• Two “selectors” for harvesting
– Date

– Set

• Why not general search?
– Out of scope

– Not low-barrier

– Difficulty in achieving consensus

Datestamps

• All dates/times are UTC, encoded in ISO8601, Z notation: 1957-03-

20T20:30:00Z

• Datestamps may be either fill date/time as above or date only (YYYY-MM-

DD). Must be consistent over whole repository, „granularity‟ specified in

Identify response.

• Earlier version of the protocol specified “local time” which caused lots of

misunderstandings. Not good for global interoperability!

Sets

• Simple notion of grouping at the item level to support
selective harvesting
– Hierarchical set structure
– Multiple set membership permitted
– E.g: repo has sets A, A:B, A:B:C, D, D:E, D:F

If item1 is in A:B then it is in A
If item2 is in D:E then it is in D, may also be in D:F
Item3 may be in no sets at all

Harvesting strategy

• Issue Identify request
– Check all as expected (validate, version, baseURL, granularity,

comporession…)

• Check sets/metadata formats as necessary (ListSets,
ListMetadataFormats)

• Do harvest, initial complete harvest done with no from and to
parameters

• Subsequent incremental harvests start from datastamp that
is responseDate of last response

OAI-PMH – Has it worked?

• Of course, yes…
– Very wide deployment

– “millions and millions of records served”

– Incorporated into commercial systems

• But….
– NSDL experience has shown “low barrier” is not always

true
• XML is hard

– Incremental harvesting model is full of holes

