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What is the problem?

• Getting heterogeneous systems to work together

• Providing the user with a seamless information 
experience

• What services do you want to provide?
– Search and access?

– More?
• information access

• authorization and authentication

• integrity and reliability

• Reuse

• How much human intervention?

• Level of perfection?



Why is it hard

• Differences in…
– hardware

– applications

– design patterns

– language

– culture

– laws

– policies

– human behaviors



Interoperability is multidimensional 

• Syntax
– XML

• Semantics
– RDF/RDFS/OWL

• Vocabularies/Ontologies
– Dublin Core/ABC/CIDOC-CRM

• Search and discovery
– Z39.50
– SDLIP
– ZING

• Protocols
– Dienst
– OAI-PMH

• Information models
– METS
– FEDORA
– DIDL



Contrast to Distributed Systems

• Distributed systems
– Collections of components at different sites that are 

carefully designed to work with each other

• Heterogeneous or federated systems
– Cooperating systems in which individual components are 

designed or operated autonomously



Web Search Strategies – Crawling and Automated Indexing

“central”
index

?



Definition

Spider = robot = crawler

Crawlers are computer programs that roam the 
Web with the goal of automating specific tasks 
related to the Web.



Crawlers and internet history

• 1991: HTTP

• 1992: 26 servers

• 1993: 60+ servers; self-register; archie

• 1994 (early) – first crawlers

• 1996 – search engines abound

• 1998 – focused crawling

• 1999 – web graph studies

• 2002 – use for digital libraries (focused crawling)



Metadata aggregation and harvesting

• Crawling is not always appropriate
– rights issues

– focused targets

– firewalls

– deep web

• Other applications than search
– Current awareness

– Preservation

– Summarization

– Complex/compound object structure (browsing, etc.)
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Syndication – RSS and Atom

• Format to expose news and content of news-like sites
– Wired

– Slashdot

– Weblogs

• “News” has very wide meaning
– Any dynamic content that can be broken down into discrete 

items
• Wiki changes

• CVS checkins

• Roles
– Provider syndicates by placing an RSS-formated XML file on 

Web

– Aggregator runs RSS-aware program to check feeds for 
changes 



RSS History

• Original design (0.90) for Netscape for building 
portals of headlines to news sites
– Loosely RDF based

• Simplified for 0.91 dropping RDF connections

• RDF branch was continued with namespaces and 
extensibility in RSS 1.0

• Non-RDF branch continued to 2.0 release

• Alternately called:
– Rich Site Summary

– RDF Site Summary

– Really Simple Syndication



RSS is in wide use

• All sorts of origins
– News

– Blogs

– Corporate sites

– Libraries

– Commercial



RSS components

• Channel 
– single tag that encloses the main body of the RSS 

document

– Contains metadata about the channel -title, link, 
description, language, image

• Item 
– Channel may contain multiple items

– Each item is a “story”

– Contains metadata about the story (title, description, 
etc.) and possible link to the story



Simple RSS 2.0 Example



RSS 2.0 Example
- Namespaces



Atom

• Attempt to rationalize RSS 1.x, 2.x divergence

• Encoding is up-to-date with current XML 
standards
– namespaces

– Schema

• Robust content model
– Distinguishes between metadata and content (plain text, 

HTML, base-64 binary)

• Well-defined extensibility model

• IETF FRC 4287
– http://www.ietf.org/rfc/rfc4287

http://www.ietf.org/rfc/rfc4287


Simple Atom Feed



Atom with
namespaces



Atom Enclosures and 
Content Support (podcast)



Automated discovery of RSS/ATOM feeds



What RSS doesn‟t have

• Notion of a “collection” – corpus of documents 
that persist

• Technique for selectively requesting metadata 
from parts of the collection

• Notion of multiple descriptive types

• These things are important for more “library-like” 
corpora, e.g., museums, libraries, institutional 
repositories



The Open Archives Initiative (OAI) and the Protocol for 
Metadata Harvesting (OAI-PMH)



OAI

Where does the OAI fit?

Dspace

Fedora

Eprints

CiteSeer

Libraries
(LofC) arXiv

Internet
Archive

Museums

Google

National
Libraries

NSDL



OAI-PMH

Data Provider 

(Repository)

Service 

Provider

(Harvester)
Protocol requests (GET, POST)

XML metadata

 PMH -> Protocol for Metadata Harvesting 
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

• Simple protocol, just 6 verbs 

• Designed to allow harvesting of any XML (meta)data (schema described)

• For batch-mode not interactive use

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm


OAI for discovery
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OAI for discovery
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OAI for XYZ
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all available metadata 
about this sculpture

item

Dublin Core
metadata 

MARC21
metadata 

branding
metadata records

item has 
identifier

record has identifier + metadata format + datestamp

OAI-PMH Data Model

resource



Identifiers

• Items have identifiers (all records of same item share 
identifier)

• Identifiers must have URI syntax identifiers must be 
assumed to be local to the repository

• Complete identification of a record is 
baseURL+identifier+metadataPrefix+datestamp



OAI-PMH verbs

FunctionVerb

listing of a single recordGetRecord

listing of N recordsListRecords

OAI unique ids contained in archiveListIdentifiers

sets defined by archiveListSets

metadata formats supported by archiveListMetadataFormats

description of archiveIdentify

metadata
about the
repository

harvesting
verbs

most verbs take arguments: dates, sets, ids, metadata formats
and resumption token (for flow control)



OAI-PMH and HTTP

• OAI-PMH uses HTTP as transport

– Encoding OAI-PMH in GET

• http://baseURL?verb=<verb>&arg1=<arg1Val>...

• Example:    http://an.oa.org/OAIscript?

verb=GetRecord&

identifier=oai:arXiv.org:hep-th/9901001&

metadataPrefix=oai_dc

• Error handling

 all OK at HTTP level? => 200 OK

 something wrong at OAI-PMH level? => OAI-PMH error (e.g. 
badVerb)

• HTTP codes 302 (redirect), 503 (retry-after), etc. still available to 
implementers, but do not represent OAI-PMH events



OAI and Metadata Formats

• Protocol based on the notion that a record can be 
described in multiple metadata formats

• Dublin Core is required for “interoperability”



OAI-PMH Responses

• All defined by one schema
– http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd“

• Generic Structure (Header and Body)

http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd


Generic Record Structure



Identify: Information about repository

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify


ListMetadataFormats: Available Formats

http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats

http://memory.loc.gov/cgi-bin/oai2_0?verb=Identify
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats
http://memory.loc.gov/cgi-bin/oai2_0?verb=ListMetadataFormats


ListRecords: Retrieve Metadata Records

http://memory.loc.gov/cgi-

bin/oai2_0?verb=ListRecords&metadataP

refix=oai_dc&set=mussm



Error/exception response

http://memory.loc.gov/cgi-
bin/oai2_0?verb=ListRecords&metadataPrefix=WRONG



resumptionToken

• Protocol supports the notion of partial responses in a very simple way: 

Response includes a „token‟ at the which is used to get the next chunk.

• Idempotency of resumptionToken: return same incomplete list when 

resumptionToken is reissued

• while no changes occur in the repo: strict

• while changes occur in the repo: all items with unchanged datestamp

• optional attributes for the resumptionToken: expirationDate, 

completeListSize, cursor



Selective Harvesting

• RSS is mainly a “tail” format

• OAI-PMH is more “grep” like

• Two “selectors” for harvesting
– Date

– Set

• Why not general search?
– Out of scope

– Not low-barrier

– Difficulty in achieving consensus 



Datestamps

• All dates/times are UTC, encoded in ISO8601, Z notation:  1957-03-

20T20:30:00Z

• Datestamps may be either fill date/time as above or date only (YYYY-MM-

DD). Must be consistent over whole repository, „granularity‟ specified in 

Identify response.

• Earlier version of the protocol specified “local time” which caused lots of 

misunderstandings. Not good for global interoperability!



Sets

• Simple notion of grouping at the item level to support 
selective harvesting
– Hierarchical set structure
– Multiple set membership permitted
– E.g: repo has sets A, A:B, A:B:C, D, D:E, D:F

If item1 is in A:B then it is in A
If item2 is in D:E then it is in D, may also be in D:F
Item3 may be in no sets at all 



Harvesting strategy

• Issue Identify request
– Check all as expected (validate, version, baseURL, granularity, 

comporession…)

• Check sets/metadata formats as necessary (ListSets, 
ListMetadataFormats)

• Do harvest, initial complete harvest done with no from and to
parameters

• Subsequent incremental harvests start from datastamp that 
is responseDate of last response



OAI-PMH – Has it worked?

• Of course, yes…
– Very wide deployment

– “millions and millions of records served”

– Incorporated into commercial systems

• But….
– NSDL experience has shown “low barrier” is not always 

true
• XML is hard

– Incremental harvesting model is full of holes


