
Markup Languages
SGML, HTML, XML, XHTML

CS 431 – February 12, 2007

Carl Lagoze – Cornell University

Text vs. Data

• Something for humans to read
– User has special requirements

• Physical abilities
• Age/education level
• Preference/mood

• Something for machines to process
– Goal in information infrastructure should be as much automation as

possible
– Client has special capabilities

• Form factor (mobile device)
• Network connectivity

• Structure
– E.g. Parts and wholes
– E.g. Relationships

• Semantics
– Global and local concepts

• Preservation: information or appearance?

Problem

• Richness of text
– Elements: letters, numbers, symbols, case

– Structure: words, sentences, paragraphs, headings,
tables

– Appearance: fonts, design, layout

– Multimedia integration: graphics, audio, math

– Internationalization: characters, direction (up, down,
right, left), diacritics

Who controls the appearance of text?

• The author/creator of the document

• Rendering software (e.g. browser)
– Mapping from markup to appearance

• The user
– Window size

– Fonts and size

Page Description Language

• Postscript, PDF

• Author/creator imprints rendering instructions in
document
– Where and how elements appear on the page in pixels

Markup languages

• SGML, XML

• Represent structure of text

• Must be combined with style instructions for
rendering on screen, page, device

Markup and style sheets

rendering
software

formatted document

document content
& structure

Marked-up document

style sheet rendering
instructions

Multiple renderings from same marked-up documents

rendering
software

PC
display

document content
& structure

marked-up document

style
sheet 1

print

rendering
software

style
sheet 2

A short history of markup (b.w.)

• Def.: A method of conveying information
(metadata) about a document

• Special characters used by proofreaders,
typesetters

• Standard Generalized Markup Language
– Standardized (ISO) in 1986

– Powerful, complex markup language widely used by
government and publishers

– Also used in the exchange of technical information in
manufacturing (Boeing design descriptions)

– Functional overkill limited widespread implementation and
use

HTML – Markup for the masses

• Core technology of web (along with URIs, HTTP)

• Simple fixed tag set

• Highly tolerant
– Tag start/close

• <p>blatz<p>scrog

• <p>blatz</p><p>scrog</p>

– Capitalization

• 7-bit ASCII based

• Tags express both appearance and structure
– <title>This is structure</title>

– What do bold or <i>italics</i> mean?

Brief History of HTML

• HTML 1.0 – limited structural tags (title, h#...)
• HTML 2.0

– 1997 RFC 1866
– Basic HTML core feature set; tables, structuring/format

tags

• HTML 3.2
– January, 1997 W3C spec., attempt to restrain the browser

wars

• HTML 4.0
– 1998
– Internationalisation
– CSS

• XHTML 1.0
– 2000, joint standard with HTML 4.01

Why not just use HTML

• Fixed tag set
• Domain-specific language
• Focus is on hypertext documents rather than

representing semi-structured data

eXtensible Markup Language

• Subset of SGML improving ease of implementation

• Meta-language that allows defining markup
languages
– No defined tags

– Meta tools for definition of purpose specific tags
• DTDs, Schema

• Syntax is defined using formal BNF
– Documents can be parsed, manipulated, stored,

transformed, stored in databases….

• Unicode character set

• W3C Recommendation (1998)

XML Suite

• XML syntax – “well-formedness”
• XML namespaces – global semantic partitions
• XML schema – semantic definitions, “validity”
• XSLT – language for transforming XML documents

– One application is stylesheets
– Distinct from CSS, which is rule-based styling language for

HTML
• XPATH – specifying individual information items in

XML documents
• XQUERY – generalized query language for XML-based

databases
• Xpointer – syntax for stating address information in a

link to an xml document.
• Xlink – specifying link semantics, types and behaviors

of links

Basic XML building blocks

• One or more elements
– Opening tag <tag>

– Empty element
• <picture></picture>

• <picture />

– Non-empty element
• Simple (CDATA) value

– <author>Paul Smith</author>

• Complex value
– <author><name>Smith</name><age>48</age></author>

• One or more attributes per element
– <title lang=“fr”>Les Miserables</title>

XML – sample instance document

• Every XML document must have a declaration

• Every opening tag must have a closing tag.

• Tags can not overlap (well-nested)

• XML documents can only have 1 root element

• Attribute values must be in quotation marks (single or
double) – Only one value per attribute.

XML – well formed-ness

• reserved characters should be encoded

< <

& &

]]>]]&

> >

“ "

„ '

XML – well formed-ness

• element names must obey XML naming conventions:

• start with letter or underscore

• can contain letters, numbers, hyphens, periods,
underscores

• no spaces in names!

• no leading space after <

• colon can only be used to separate namespace of the
element from the element name

• case-sensitive

• can not start with xml, XML, xML, …

XML – well formed-ness

XML – well formed-ness

White Spaces: space, tab, line feed, carriage return

• in HTML: must explicitly write white spaces as &nsbsp;
because HTML processors strip off white spaces

• not so in XML:

• space in CDATA stays

• tab in CDATA stays

• multiple new line characters transformed into a single
one

xHTML as a special case of XML

• HTML “expressed” in XML

• Corrects defects in HTML
– All tags closed

– Proper nesting

– Case sensitive (all tags lower case)

– Strict well-formedness

• Defined by a DTD (more on this later)
– Defines the set of tags allowed and their nesting structure

• All new HTML (and ALL for this class) SHOULD be xHTML

• W3C validator

– http://validator.w3.org/

http://validator.w3.org/

Parsing & Manipulating XML – the tree

invoice

cust.

product

name

addr.

code

quant.

XML as semi-structured data

Unstructured
data

Carl Lagoze Ithaca

George Bush Washington

Ithaca NY 27000

Washington DC 650000

Structured
dataSemi-structured

data

Parsing and Manipulating XML
XML Parsers

• Two types of parsers
– Non-validating (only check well-formedness)

– Validating

• Apache xerces is most popular for Java

Parsing & Manipulating XML
Document Object Model (DOM)

• W3C standard interface for accessing and
manipulating an XML document

• Language-neutral API for manipulating/accessing
XML documents
– Bindings to multiple languages (C#, Java, Perl, Python)
– JAXP is one Java implementation of DOM

• Basic tree model
• General node interface captures general behavior

– Child, parent, descendents, etc.

• Specializations of node
– Document (root)
– Element, Text, Comment, Attribute, etc.

– Generality of DOM makes it a bit cumbersome

http://java.sun.com/webservices/jaxp

Parsing & Manipulating XML (JDOM)
http://www.jdom.org/

• One example of a Java-specific XML tree API
– (Another is dom4j - http://www.dom4j.org/)

– 80-20 rule, common operations easy to perform, use DOM or
dom4j for more complex.

• Tailored for Java rather than language neutral
– Java elements described as a class hierarchy

– Collections of elements and attributes represented as Java
lists, traversed using Iterators

Content Parent

Comment DocType Text Element Document

Attribute

CDATA

http://www.jdom.org/
http://www.dom4j.org/

Parsing & Manipulating XML (JDOM)
http://www.jdom.org/

• Basic navigation functionality
– Parent

– Child (all, specific, filtered)

– Descendents

– Attributes (all, specific, filtered)

• Basic tree manipulation
– Adding, replacing, removing contents and attributes)

– Text modification

– Maintains well-formedness

http://www.jdom.org/

Simple API for XML (SAX)

• Event-based interface

• Does not build an internal representation in
memory

• Available with most XML parsers

• Main SAX events
– startDocument, endDocument

– startElement, endElement

– characters

Simple SAX Example

Document Events

startDocument()

startElement(“books”)

startElement(“book”)

characters(“War and Peace”)

endElement(“book”)

endElement(“books”)

endDocument()

Why use SAX?

• Memory efficient

• Data structure independent (not tied to trees)

• Care only about a small part of the document

• Simplicity

• Speed

Why use DOM or JDOM?

• Random access through document

• Document persistence for searches, etc.

• Read/Write

• Lexical information
– Comments

– Encodings

– Attribute order

