Semantic Web - OWL

CS 431 – April 4, 2006 Carl Lagoze – Cornell University

Acknowledgements for various slides and ideas

- Ian Horrocks (Manchester U.K.)
- Eric Miller (W3C)
- Dieter Fensel (Berlin)
- Volker Haarslev (Montreal)

Components of the Semantic Web

Problems with RDF/RDFs Non-standard, overly "liberal" semantics

- No distinction between class and instances
 - <Species, type, Class>
 - <Lion, type, Species>
 - <Leo, type, Lion>
- Properties themselves can have properties
 - <hasDaughter, subPropertyOf, hasChild>
 - <hasDaugnter, type, Property>
- No distinction between language constructors and ontology vocabulary, so constructors can be applied to themselves/each other
 - <type, range, Class>
 - <Property, type, Class>
 - <type, subPropertyOf, subClassOf>
- No known reasoners for these non-standard semantics

Problems with RDF/RDFs Weaknesses in expressivity

- No localized domain and range constraints
 - Can't say the range of hasChild is person in context of persons and elephants in context of elephants
- No existence/cardinality constraints
 - Can't say that all instances of persons have a mother that is also a person
 - Can't say that persons have exactly two biological parents
- No transitive, inverse or symmetric properties
 - Can't say isPartOf is a transitive property
 - Can't say isPartOf is inverse of hasPart
 - Can't say touches is symmetric

So, we need a more expressive and well-grounded ontology language....

Web Ontology Language (OWL)

- W3C Web Ontology Working Group (WebOnt)
- Follow on to DAML, OIL efforts
- W3C Recommendation
- Vocabulary extension of RDF

Species of OWL

- OWL Lite
 - Good for classification hierarchies with simple constraints (e.g., thesauri)
 - Reasoning is computational simple and efficient
- OWL DL
 - Computationally complete and decidable (computation in finite time)
 - Correspondence to *description logics* (decidable fragment of first-order logic)
- OWL Full
 - Maximum expressiveness
 - No computational guarantees (probably never will be)
- Each language is extension of simpler predecessor

Relationship between OWL and RDF(s)

- OWL Full is extension of RDF
- OWL Lite and DL are extensions of a restricted view of RDF
- Every OWL document is an RDF document
- Every RDF document is an OWL Full document
- Only some RDF documents are OWL Lite or OWL DC
- Constraining an RDF document to be OWL Lite or DL
 - Every individual must have class membership (at least owl:thing)
 - URIs for classes, properties, and individuals must be mutually disjoint.

The "DL" in Owl DL

- Description Logics
- Goal: want to be able to reason (infer information) about a knowledge base
- Remember: a knowledge base consists of both meta (schema) information and instance (individual) information
- Remember: we want to do this based on an open world assumption
- OWL (Lite/DL) is then an RDF expression of DL

Description Logics

- Highly expressable fragment of FOL with:
 - Decidability: guaranteed that computation can be done in finite amount of time
 - Completeness: every question within the logical system can be answered, or there are no paradoxes
- Designed for logical representation of object-oriented formalisms
 - frames/classes/concepts
 - sets of objects
 - roles/properties
 - binary relations on objects
 - individuals
- Represented as a collection of statements, with unary and binary predicates that stand for concepts and roles, from which deductions can be made

Description Logics Primitives

- Atomic Concept
 - Human
- Atomic Role
 - likes
- Conjunction
 - human intersection male
- Disjunction
 - nice union rich
- Negation
 - not rich
- Existential Class Restriction
 - exists enrolledIn.CSclass

- Universal Class Restriction
 - all.enrolledIN.CSclass
- Cardinality Restriction
 - ≥ 2 has-wheels
- Inverse Roles
 - has-child, has-parent
- Transitive roles
 - has-child

Description Logic - Tboxes

- Terminological knowledge
- Concept Definitions
 - Father is conjunction of Man and has-child.Human
- Axioms
 - motorcycle subset-of vehicle
 - has-favorite.Brewery subrelation-of drinks.Beer

Description Logics: Aboxes

- Assertional knowledge
- Concept assertions
 John is-a Man
- Role assertions
 - has-child(John, Bill)

Description Logics: Basic Inferencing

- Subsumption
 - Is C1 subclass-of C2
 - Compute taxonomy
- Consistency
 - Can C have any individuals

Namespaces and OWL

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.co-ode.org/ontologies/wine/2005/10/18/wine.owl#" xml:base="http://www.co-ode.org/ontologies/wine/2005/10/18/wine.owl" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:owl="http://www.w3.org/2002/07/owl#">

OWL Class Definition

<??xml version="1.0"?> <rdf.RDF xmlns="http://www.co-ode.org/ontologies/wine/2005/10/18/wine.owl#" xml:base="http://www.w3.org/2001/XMLSchema#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsd="http://www.w3.org/2000/01/rdf-schema#" xmlns:rdfs="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:owl="http://www.w3.org/2002/07/owl#"> <owl:class rdf:ID="PotableLiquid"/> <owl:class rdf:ID="PotableLiquid"/> <owl:class rdf:ID="Wine"> <rdfs:subClass Of rdf:resource="#PotableLiquid"/> <rdfs:label xml:lang="en">wine</rdfs:label> </owl:Class>

</rdf:RDF>

Why owl:class vs. rdfs:class

- Rdfs:class is "class of all classes"
- In DL class can not be treated as individuals (undecidable)
- Thus owl:class, which is expressed as rdfs:subclass of rdfs:class
 - No problem for standard rdf processors since an owl:class "is a" rdfs:class
- Note: there are other times you want to treat class of individuals
 - Class drinkable liquids has instances wine, beer,
 - Class wine has instances merlot, chardonnay, zinfandel, ...

OWL class building operations

disjointWith

- No vegetarians are carnivores
- sameClassAs (equivalence)
- Enumerations (on instances)
 - The Ivy League is Cornell, Harvard, Yale,
- Boolean set semantics (on classes)
 - Union (logical disjunction)
 - Class parent is union of mother, father
 - Intersection (logical conjunction of class with properties)
 - Class WhiteWine is conjunction of things of class wine and have property white
 - complimentOf (logical negation)
 - Class vegetarian is disjunct of class carnivore

OWL Properties

Two types

- ObjectProperty relations between instances of classes
- DatatypeProperty relates an instance to an rdfs:Literal or XML Schema datatype

(Both rdfs:subClassOf rdf:Property)

<owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="Person" />
 <rdfs:range rdf:resource=
 "http://www.w3.org/2001/XMLSchema/string" />
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="activity">
 <rdfs:domain rdf:resource="Person" />
 <rdfs:domain rdf:resource="Person" />
 <rdfs:range rdf:resource="ActivityArea" />
</owl: ObjectProperty>

OWL property building operations & restrictions

- Transitive Property
 - P(x,y) and $P(y,z) \rightarrow P(x,z)$
- SymmetricProperty
 - P(x,y) iff P(y,x)
- Functional Property
 - P(x,y) and $P(x,z) \rightarrow y=z$
- inverseOf
 - P1(x,y) iff P2(y,x)
- InverseFunctional Property
 - P(y,x) and $P(z,x) \rightarrow y=z$
- Cardinality
 - Only 0 or 1 in lite and full

Class/Property Example

```
<?xml version="1.0"?>
<rdf:RDF xmIns="http://www.co-ode.org/ontologies/wine/2005/10/18/wine.owl#"
 xml:base="http://www.co-ode.org/ontologies/wine/2005/10/18/wine.owl"
 xmins:xsd="http://www.w3.org/2001/XMLSchema#" xmins:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#">
  <owl:class rdf:ID="PotableLiquid"/>
  <owl:Class rdf:ID="Wine">
    <rdfs:subClassOf rdf:resource="#PotableLiquid"/>
    <rdfs:label.xml:lang="en">wine</rdfs:label>
    <rdfs:label.xml:lang="fr">vin</rdfs:label>
  </owl:Class>
  <owl:DatatypeProperty rdf:ID="color">
    <rdfs:domain rdf:resource="#Wine"/>
    <rdfs:range_rdf:resource="http://www.w3.org/2001/XMLSchema/string"/>
  </owl:DatatypeProperty>
  <owl:Class rdf:ID="Appellation"/>
  <owl:ObjectProperty rdf:ID="hasAppellation">
    <rdfs:domain rdf:resource="#Wine"/>
    <rdfs:range rdf:resource="#Appellation"/>
  </owl:ObjectProperty>
  <owl:ObjectProperty rdf:ID="producesWine">
    <rdfs:range rdf:resource="#Wine"/>
    <rdfs:domain rdf:resource="#Appellation"/>
    <owl:inverseOfrdf:resource="#hasAppellation"/>
  </owl:ObjectProperty>
</rdf:RDF>
```

OWL DataTypes

- Full use of XML schema data type definitions
- Examples
 - Define a type age that must be a non-negative integer
 - Define a type clothing size that is an enumeration "small" "medium" "large"

OWL Instance Creation

• Create individual objects filling in slot/attribute/property definitions

<Person ref:ID="William Arms"> <rdfs:label>Bill</rdfs:label> <age><xsd:integer rdf:value="57"/></age> <shoesize><xsd:decimal rdf:value="10.5"/></shoesize> </Person>

OWL Lite Summary

RDF Schema Features:

• Class (Thing, Nothing)

- <u>rdfs:subClassOf</u>
- <u>rdf:Property</u>
- <u>rdfs:subPropertyOf</u>
- <u>rdfs:domain</u>
- <u>rdfs:range</u>
- Individual

Property Restrictions:

- <u>Restriction</u>
- <u>onProperty</u>
- <u>allValuesFrom</u>
- <u>someValuesFrom</u>

Class Intersection:

intersectionOf

Datatypes

<u>xsd datatypes</u>

(In)Equality:

- <u>equivalentClass</u>
- <u>equivalentProperty</u>
- <u>sameAs</u>
- <u>differentFrom</u>
- <u>AllDifferent</u>
- <u>distinctMembers</u>

Property Characteristics:

- ObjectProperty
- <u>DatatypeProperty</u>
- <u>inverseOf</u>
- TransitiveProperty
- SymmetricProperty
- FunctionalProperty
- InverseFunctionalProperty

Restricted Cardinality:

- minCardinality (only 0 or 1)
- maxCardinality (only 0 or 1)
- <u>cardinality</u> (only 0 or 1)

Header Information:

- <u>Ontology</u>
- <u>imports</u>

Versioning:

- versionInfo
- priorVersion
- <u>backwardCompatibleWith</u>
- incompatibleWith
- <u>DeprecatedClass</u>
- <u>DeprecatedProperty</u>

Annotation Properties:

- <u>rdfs:label</u>
- <u>rdfs:comment</u>
- <u>rdfs:seeAlso</u>
- <u>rdfs:isDefinedBy</u>
- AnnotationProperty
- OntologyProperty

OWL DL and Full Summary

Class Axioms:

- <u>oneOf</u>, <u>dataRange</u>
- <u>disjointWith</u>
- <u>equivalentClass</u> (applied to class expressions)
- <u>rdfs:subClassOf</u> (applied to class expressions)

Boolean Combinations of Class Expressions:

- <u>unionOf</u>
- <u>complementOf</u>
- intersectionOf

Arbitrary Cardinality:

Filler Information:

<u>hasValue</u>

- <u>minCardinality</u>
- <u>maxCardinality</u>
- <u>cardinality</u>

OWL DL vs. OWL-Full

- Same vocabulary
- OWL DL restrictions
 - Type separation
 - Class can not also be an individual or property
 - Property can not also be an individual or class
 - Separation of ObjectProperties and DatatypeProperties

Language Comparison

	DTD	XSD	RDF(S)	OWL
Bounded lists ("X is known to have exactly 5 children")				Х
Cardinality constraints (Kleene operators)	Х	Х		Х
Class expressions (unionOf, complementOf)				Х
Data types		Х		Х
Enumerations	Х	Х		Х
Equivalence (properties, classes, instances)				Х
Formal semantics (model-theoretic & axiomatic)				Х
Inheritance			Х	Х
Inference (transitivity, inverse)				Х
Qualified contraints ("all children are of type person"				Х
Reification			Х	Х

Storing and querying RDF-based models

- Persistent storage implementations
 - Jena 2 http://www.hpl.hp.com/semweb/jena2.htm
 - Relational databases (mysql, postgres, oracle)
 - Kowari http://www.kowari.org
 - Mapped files
 - Sesame http://www.openrdf.org/
 - Relational databases (mysql, postgres, oracle)
- Query languages
 - RDQL (Kowari, Jena)
 - SPARQL
 - W3C working draft
 - http://www.w3.org/TR/rdf-sparql-query/

RDQL-by-example

- RDF source
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-db-3.rdf</u>
- Queries
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q1</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q2</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q3</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q4</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q5</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q6</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q7</u>
 - <u>http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q8</u>

Protégé and RACER – tools for building, manipulating and reasoning over ontologies

- Protégé <u>http://protege.stanford.edu/</u>
 - Use the 3.x version
 - Multiple plug-ins are available
- Protégé OWL plug-in
 - <u>http://protege.stanford.edu/plugins/owl/</u>
- Other semantic web related plug-ins
 - <u>http://protege.cim3.net/cgi-</u>
 <u>bin/wiki.pl?ProtegePluginsLibraryByTopic#nid349</u>
- Racer
 - Description Logic based reasoning engine
 - Server-based
 - Integrates with Protégé-OWL