
Semantic Web Schema and 

Ontologies
CS 431 – April 3, 2006

Carl Lagoze – Cornell University



Acknowledgements for various 

slides and ideas

• Ian Horrocks (Manchester U.K.)

• Eric Miller (W3C)

• Dieter Fensel (Berlin)

• Volker Haarslev (Montreal)



Jena Toolkit

• Robust tools for building and manipulating RDF 

models

– HP Labs Bristol

– Capabilities

• Model construction

• XML and N3 parsing

• Model persistence (DB foundation)

• Model querying

• Ontology building

• Inferencing

• http://jena.sourceforge.net/index.html

http://jena.sourceforge.net/index.html
http://jena.sourceforge.net/index.html


RDQLPlus

• Simple RDF and OWL experimentation 

application

• http://rdqlplus.sourceforge.net/

• Chris Wilper - Cornell

http://rdqlplus.sourceforge.net/


RDF Schemas

• Declaration of vocabularies

– classes, properties, and relationships defined by a particular 

community

– relationship of properties to classes

• Provides substructure for inferences based on existing 

triples

• NOT prescriptive, but descriptive

– NOTE: This is different from XML Schema

• Schema language is an expression of basic RDF model

– uses meta-model constructs: resources, statements, properties

– schema are “legal” rdf graphs and can be expressed in 

RDF/XML syntax



RDFs Namespace

• Class-related

– rdfs:Class, rdfs:subClassOf

• Property-related

– rdfs:subPropertyOf, rdfs:domain, rdfs:range



RDF Schema: Specializing 

Properties

• rdfs:subPropertyOf – allows specialization of 

relations

– E.g., the property “father” is a subPropertyOf the 

property parent

• subPropertyOf semantics

Explicit Model Inferences

(:s rdfs:subPropertyOf :o) (:s rdf:type rdf:Property)

(:o rdf:type rdf:Property)

(:s :p :o)

(:p rdfs:subPropertyOf :q)

(:s :q :o)

(:p rdfs:subPropertyOf :q)

(:q rdfs:subPropertyOf :r)

(:p rdfs:subPropertyOf :r)



Inferences from Property Relationships



Sub-Property Semantics

• Note the inferences we can not make at this 

time:

– E.g., transitivity, reflexity

• But, just wait (OWL)

implies



Property-based semantics

• Provide basis for type inference from properties

• NOT restrictive like xml schema constraints

• rdfs:domain

– classes of resources that have a specific property

• rdfs:range

– classes of resources that may be the value of a specific property

Explicit Model Inferences

(:s :p :o)

(:p rdfs:domain :t)

(:s rdf:type :t)

(:s :p :o)

(:p rdfs:range :t)

(:o rdf:type :t)



Inferences from Constraints



Class Declaration

• rdfs:Class

– A resources denoting a set of resources;

– Range of rdf:type

rdf:type rdf:type
rdfs:class

ex:MotorVehicle rdf:type rdfs:Class

exthings:companyCar rdf:type ex:MotorVehicle



Class Hierarchy

• rdfs:subClassOf

– Create class hierarchy

rdfs:subClassOf

rdf:type

rdf:class

rdf:type

rdf:class

ex:MotorVehicle rdf:type rdfs:Class

ex:SUV rdf:type rdfs:Class

ex:SUV rdf:subClassOf ex:MotorVehicle

exthings:companyCar rdf:type ex:SUV



Sub-Class Inferencing

Explicit Model Inferences

(:s rdf:type :o) (:o rdf:type rdfs:Class)

(:s rdf:type :o)

(:o rdfs:subClassOf :c)

(:s rdf:type :c)

(:s rdfs:subClassOf :o)

(:o rdfs:subClassOf :c)

(:s rdfs:subClassOf :c)

(:s rdfs:subClassOf :o) (:s rdf:type rdfs:Class)

(:o rdf:type rdfs:Class)

(:s rdf:type rdfs:Class) (:s rdfs:subClassOf rdf:Resource)



Sub-class Inferencing Example



Components of the Semantic Web



Problems with RDF/RDFs

Non-standard, overly “liberal” 

semantics
• No distinction between class and instances

– <Species, type, Class>

– <Lion, type, Species>

– <Leo, type, Lion>

• Properties themselves can have properties
– <hasDaughter, subPropertyOf, hasChild>

– <hasDaugnter, type, Property>

• No distinction between language constructors and 
ontology vocabulary, so constructors can be applied to 
themselves/each other
– <type, range, Class>

– <Property, type, Class>

– <type, subPropertyOf, subClassOf>

• No known reasoners for these non-standard semantics



Problems with RDF/RDFs

Weaknesses in expressivity

• No localized domain and range constraints

– Can’t say the range of hasChild is person in context 

of persons and elephants in context of elephants

• No existence/cardinality constraints

– Can’t say that all instances of persons have a mother 

that is also a person

– Can’t say that persons have exactly two biological 

parents

• No transitive, inverse or symmetric properties

– Can’t say isPartOf is a transitive property

– Can’t say isPartOf is inverse of hasPart

– Can’t say touches is symmetric



So, we need a more expressive 

and well-grounded ontology 

language….



What is an Ontology?

• A formal specification of conceptualization 
shared in a community

• Vocabulary for defining a set of things that exist 
in a world view

• Formalization allows communication across 
application systems and extension

• Parallel concepts in other areas:
– Domains: database theory

– Types: AI

– Classes: OO systems

– Types/Sorts: Logic

• Global vs. Domain-specific



XML and RDF are ontologically 

neutral

• No standard vocabulary just primitives

– Resource, Class, Property, Statement, etc.

• Compare to classic first order logic

– Conjunction, disjunction, implication, existential, 

universal quantifier



Components of an Ontology

• Vocabulary (concepts)

• Structure (attributes of concepts and hierarchy)

• Relationships between concepts

• Logical characteristics of relationships

– Domain and range restrictions

– Properties of relations (symmetry, transitivity)

– Cardinality of relations

– etc.



Wordnet

• On-line lexical reference system, domain-

independent

• >100,000 word meanings organized in a 

taxonomy with semantic relationships

– Synonymy, meronymy, hyponymy, hypernymy 

• Useful for text retrieval, etc.

• http://www.cogsci.princeton.edu/~wn/online/

http://www.cogsci.princeton.edu/~wn/online/


CYC

• Effort in AI community to accommodate all of 

human knowledge!!!

• Formalizes concepts with logical axioms 

specifying constraints on objects and classes

• Associated reasoning tools

• Contents are proprietary but there is OpenCyc

– http://www.opencyc.org/

http://www.opencyc.org/


So why re-invent ontologies for the 

Web
• Not re-invention

– Same underlying formalisms (frames, slots, description logic)

• But new factors
– Massive scale

• Tractability

• Knowledge expressiveness must be limited or reasoning must be 
incomplete 

– Lack of central control
• Need for federation

• Inconsistency, lies, re-interpretations, duplications

• New facts appear and modify constantly

– Open world vs. Close world assumptions
• Contrast to most reasoning systems that assume anything absent 

from knowledge base is not true

• Need to maintain monotonicity with tolerance for contradictions

– Need to build on existing standards
• URI, XML, RDF



Web Ontology Language (OWL)

• W3C Web Ontology Working Group (WebOnt)

• Follow on to DAML, OIL efforts

• W3C Recommendation

• Vocabulary extension of RDF 



Species of OWL

• OWL Lite

– Good for classification hierarchies with simple constraints (e.g., 

thesauri)

– Reasoning is computational simple and efficient

• OWL DL

– Computationally complete and decidable (computation in finite 

time)

– Correspondence to description logics (decidable fragment of 

first-order logic)

• OWL Full

– Maximum expressiveness

– No computational guarantees (probably never will be)

• Each language is extension of simpler predecessor 



Description Logics

• Fragment of first-order logic designed for logical 

representation of object-oriented formalisms

– frames/classes/concepts

• sets of objects

– roles/properties

• binary relations on objects

– individuals

• Representation as a collection of statements, with unary 

and binary predicates that stand for concepts and roles, 

from which deductions can be made

• High expressivity with decidability and completeness

– Decidable fragment of FOL



Description Logics Primitives

• Atomic Concept

– Human

• Atomic Role

– likes

• Conjunction

– human intersection male

• Disjunction

– nice union rich

• Negation

– not rich

• Existential Restriction

– exists has-child.Human

• Value Restriction

– for-all has-child.Blond

• Number Restriction

– ≥ 2 has-wheels

• Inverse Role

– has-child, has-parent

• Transitive role

– has-child



Description Logic - Tboxes

• Terminological knowledge

• Concept Definitions

– Father is conjunction of Man and has-child.Human

• Axioms

– motorcycle subset-of vehicle

– has-favorite.Brewery subrelation-of drinks.Beer



Description Logics: Aboxes

• Assertional knowledge

• Concept assertions

– John is-a Man

• Role assertions

– has-child(John, Bill)



Description Logics: Basic 

Inferencing

• Subsumption

– Is C1 subclass-of C2

– Compute taxonomy

• Consistency

– Can C have any individuals



Namespaces and OWL



OWL Class Definition



Why owl:class vs. rdfs:class

• Rdfs:class is “class of all classes”

• In DL class can not be treated as individuals 
(undecidable)

• Thus owl:class, which is expressed as rdfs:subclass of 
rdfs:class
– No problem for standard rdf processors since an owl:class “is a” 

rdfs:class

• Note: there are other times you want to treat class of 
individuals
– Class drinkable liquids has instances wine, beer, ….

– Class wine has instances merlot, chardonnay, zinfandel, …



OWL class building operations

• disjointWith
– No vegetarians are carnivores

• sameClassAs (equivalence)

• Enumerations (on instances)
– The Ivy League is Cornell, Harvard, Yale, ….

• Boolean set semantics (on classes)
– Union (logical disjunction)

• Class parent is union of mother, father

– Intersection (logical conjunction of class with properties)

• Class WhiteWine is conjunction of things of class wine and have 
property white

– complimentOf (logical negation)

• Class vegetarian is disjunct of class carnivore



OWL Properties



OWL property building operations 

& restrictions
• Transitive Property

– P(x,y) and P(y,z) -> P(x,z)

• SymmetricProperty
– P(x,y) iff P(y,x)

• Functional Property
– P(x,y) and P(x,z) -> y=z

• inverseOf
– P1(x,y) iff P2(y,x)

• InverseFunctional Property
– P(y,x) and P(z,x) -> y=z

• Cardinality
– Only 0 or 1 in lite and full



OWL DataTypes

• Full use of XML schema data type definitions

• Examples

– Define a type age that must be a non-negative integer

– Define a type clothing size that is an enumeration 

“small” “medium” “large”



OWL Instance Creation

• Create individual objects filling in 

slot/attribute/property definitions

<Person ref:ID=“William Arms”>

<rdfs:label>Bill</rdfs:label>

<age><xsd:integer rdf:value=“57”/></age>

<shoesize><xsd:decimal rdf:value=“10.5”/></shoesize>

</Person>



OWL Lite Summary



OWL DL and Full Summary



OWL DL vs. OWL-Full

• Same vocabulary

• OWL DL restrictions

– Type separation

• Class can not also be an individual or property

• Property can not also be an individual or class

– Separation of ObjectProperties and 

DatatypeProperties



Language Comparison

DTD XSD RDF(S) OWL

Bounded lists (“X is known to have exactly 5 

children”)

X

Cardinality constraints (Kleene operators) X X X

Class expressions (unionOf, complementOf) X

Data types X X

Enumerations X X X

Equivalence (properties, classes, instances) X

Formal semantics (model-theoretic & axiomatic) X

Inheritance X X

Inference (transitivity, inverse) X

Qualified contraints (“all children are of type person” X

Reification X X



Protégé and RACER – tools for 

building, manipulating and reasoning 

over ontologies
• Protégé - http://protege.stanford.edu/

– Use the 3.x version

– Multiple plug-ins are available

• Protégé OWL plug-in
– http://protege.stanford.edu/plugins/owl/

• Other semantic web related plug-ins
– http://protege.cim3.net/cgi-

bin/wiki.pl?ProtegePluginsLibraryByTopic#nid349

• Racer
– Description Logic based reasoning engine

– Server-based

– Integrates with Protégé-OWL

http://protege.stanford.edu/
http://protege.stanford.edu/plugins/owl/
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegePluginsLibraryByTopic
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegePluginsLibraryByTopic
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegePluginsLibraryByTopic

