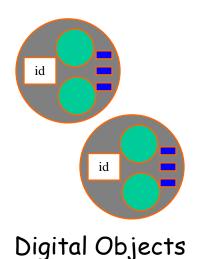
Combining Content, Semantic Relationships, and Web Services - Fedora

CS 431 - April 11, 2007 Carl Lagoze - Cornell University

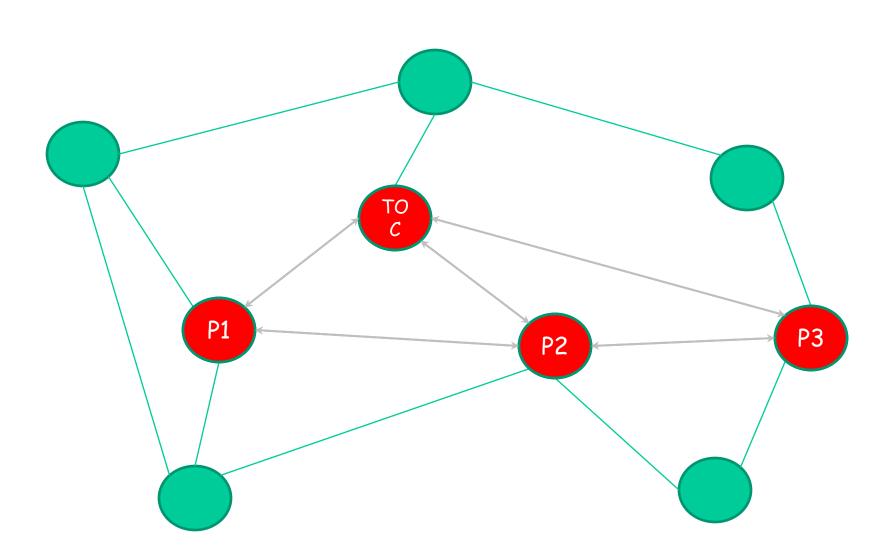
Acknowledgements:
Sandy Payette (Cornell)
Herbert Van de Sompel (LANL)
Sang Shin (Sun)


Compound Information Objects

 Aggregations of distinct information units that when combined form a logical whole.

Examples

- digitized book that is an aggregation of chapters, where each chapter is an aggregation of scanned pages;
- a CD that is the aggregation of several audio tracks;
- an image object that is the aggregation of a high quality master, a medium quality derivative and a low quality thumbnail;
- a scholarly publication that is aggregation of text and supporting materials such as datasets, software tools, and video recordings of an experiment;
- a multi-page web document with an HTML table of contents that points to multiple interlinked HTML individual pages.


Compound Information Objects

Digital content with multiple components varying on:

- Content (semantic) types including:
 - Text
 - Datasets
 - Simulations
 - Software
 - · Dynamic knowledge representations
 - · Machine readable chemical structures
 - Bibliographic and other types of metadata
- Media types including
 - IANA registered MIME types
 - Other type registries such as GDFR
- **Network locations** including content from:
 - Institutional repositories
 - Scientific data repositories
 - Social networking sites
 - · General web
- Relationships including:
 - Lineage
 - Versions
 - Derivations

Compound objects in the web graph

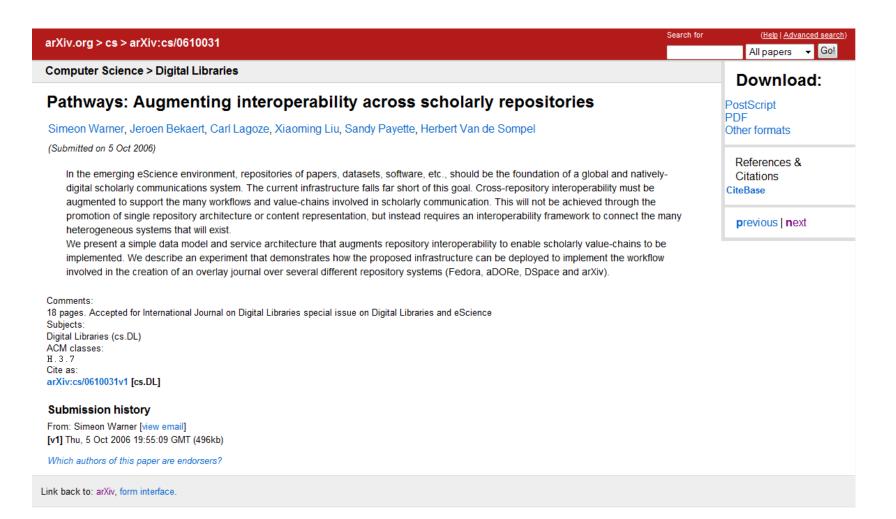
Compound Information Objects in Common Use

Back to the Flickr photo page

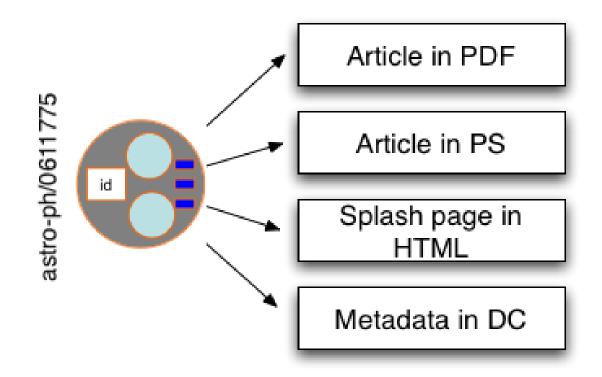
Available sizes:

Square (75 x 75) Thumbnail (67 x 100) Small (161 x 240)

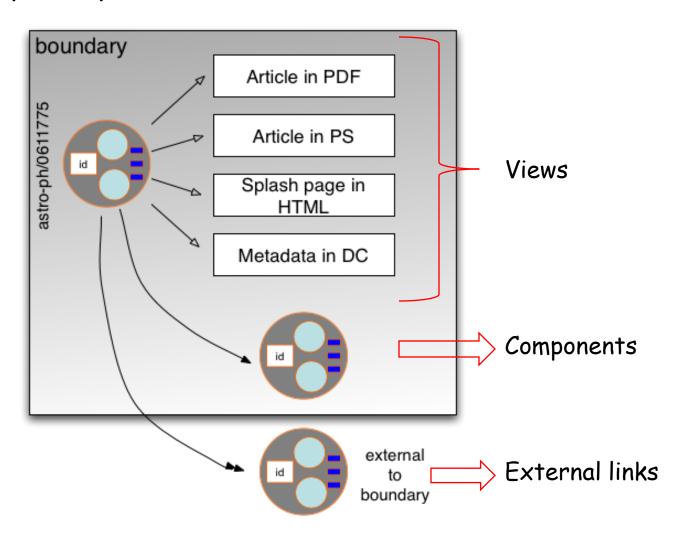
Medium (334 x 500)


<u>Large</u> (685 x 1024) Original (2592 x 3872)

Download the Small size



@ All rights reserved.


Compound Information Objects in Common Use

Simple Digital Object

More complexity...

The Fedora Project

- Fedora
 - Flexible
 - Extensible
 - Digital
 - Object
 - Repository
 - Architecture
- Open source software
 - Not Red Hat!
 - Mozilla Public License
- http://www.fedora.info

Fedora Features

- Digital Object Model
 - Aggregate multiple information streams
 - Multiple types
 - Local and Distributed
- Integrate content and web services
 - Dynamically produced representations
- Semantic Web
 - Typed relationships among objects
- Service-based
 - All functionality exposed as web services
 - Integration with other applications and interfaces

Fedora History

Cornell Research (1997-present)

- DARPA and NSF-funded research
- First reference implementation developed
- Distributed, Interoperable Repositories (experiments with CNRI)
- Policy Enforcement

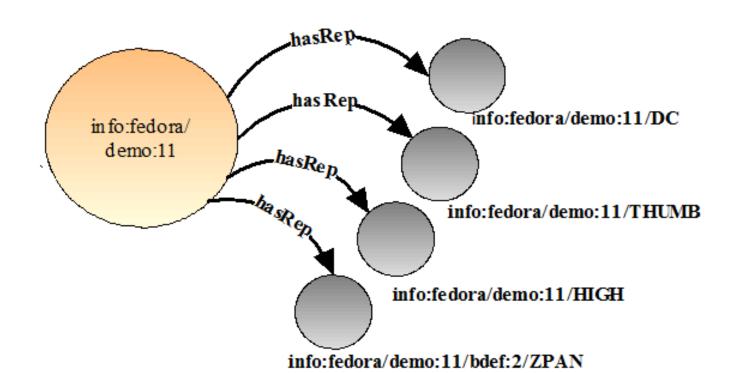
First Application (1999-2001)

- University of Virginia digital library prototype
- Technical implementation: adapted to web; RDBMS storage
- Scale/stress testing for 10,000,000 objects

Open Source Software (2002-present)

- Andrew W. Mellon Foundation grants
- Technical implementation: XML and web services
- Fedora 1.0 (May 2003)
- Fedora 2.0 (Jan 2005)

Fedora Use Cases


- Digital Library Collections
- Institutional Repository
- Educational Software
- Information Network Overlay
- Digital archives and preservation
- Digital Asset Management
- Content Management System
- Scholarly publishing
- eScholarship, eScience
- Data Curation

Selected Fedora Users

- University of Virginia: digital library (<u>image collector</u>, <u>EAD</u>, e-texts)
- VTLS (software company): commercial product (VITAL)
- Tufts University: education (VUE/concept maps); digital library
- Northwestern: academic technologies (<u>images</u>, <u>art</u>, video, e-texts)
- · National Science Digital Library (NSDL): Cornell Core Integration
- · ARROW: National Library of Australia and Monash University
- Royal Library of Denmark and DTU
- Rutgers University: <u>digital library</u> (e-journals, numeric data)
- · Indiana University: EVIA Digital Archive (video)
- · American Geophysical Union: scholarly publications
- · Max Planck Institue: Scholarly Communication
- · Cornell University: Bear Access
- · Yale University electronic records
- New York University: humanities computing; digital library
- OhioLink
- · DISA South Africa, History of Apartheid resistance
- Public Library of Science (PLOS)
- · CiteSeer Penn State

Digital Object Model

"Graph" View of Fedora Objects

Fedora Digital Object Model Component View

Persistent ID (PID)

Relations (RELS-EXT)

Dublin Core (DC)

Audit Trail (AUDIT)

Datastream

Datastream

Default Disseminator

Disseminator

Digital object identifier

Reserved Datastreams

Key object metadata

Datastreams

Set of content or metadata items

Disseminators

Pointers to service definitions to provide service-mediated views

Fedora - XML for digital objects

FOXML (Fedora Object XML)

- Simple XML format directly expresses Fedora object model
- Easily adapts to Fedora new and planned features
- Easily translated to other well-known formats
- Internal storage format for objects in repository

```
<?xml version="1.0" encoding="UTF-8"?>
<foxml:digitalObject xmlns:foxml="info:fedora/fedora-system:def/foxml#"
     xmlns:fedoraxsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:audit="info:fedora/fedora-system:def/audit#"
     fedoraxsi:schemaLocation="info:fedora/fedora-system:def/foxml# http://www.fedora.info/definitions/1/0/foxml1-0.xsd"
     PID="demo:1">
  <foxml:objectProperties>
    <foxml:property NAME="http://www.w3.org/1999/02/22-rdf-syntax-ns#type" VALUE="FedoraBDefObject"/>
    <foxml:property NAME="info:fedora/fedora-system:def/model#state" VALUE="Active"/>
    <foxml:property.NAME="info:fedora/fedora-system:def/model#label" VALUE="Behavior Definition Object for UVA Simple Image Contract"/>,
    <foxml:property NAME="info:fedora/fedora-system:def/model#ownerld" VALUE="fedoraAdmin"/>
    <foxml:property NAME="info:fedora/fedora-system:def/model#createdDate" VALUE="2007-04-10T20:55:40.969Z"/>
    <foxml:property NAME="info:fedora/fedora-system:def/view#lastModifiedDate" VALUE="2007-04-10T20:55:40.969Z"/>
    <foxml:property NAME="info:fedora/fedora-system:def/model#contentModel" VALUE="fedora:BDEF"/>
  </fr></foxml:objectProperties>
  <foxml:datastream ID="DS1" STATE="A" CONTROL_GROUP="E" VERSIONABLE="true"> [5 lines]
  <foxml:datastream ID="DC" STATE="A" CONTROL_GROUP="X" VERSIONABLE="true"> [10 lines]
  <foxml:datastream ID="METHODMAP" STATE="A" CONTROL GROUP="X" VERSIONABLE="true"> [13 lines]
  <foxml:disseminator ID="DISS1" BDEF_CONTRACT_PID="fedora-system:1" STATE="A" VERSIONABLE="true"> [7 lines]
</fr></foxml:digitalObject>
```

Fedora Digital Object Model Component View

Persistent ID (PID)

Relations (RELS-EXT)

Dublin Core (DC)

Audit Trail (AUDIT)

Datastream

Datastream

Default Disseminator

Disseminator

Digital object identifier

Reserved Datastreams

Key object metadata

Datastreams

Set of content or metadata items

Disseminators

Pointers to service definitions to provide service-mediated views

The Datastream Component

4 Classifications for Datastreams

Inline XML

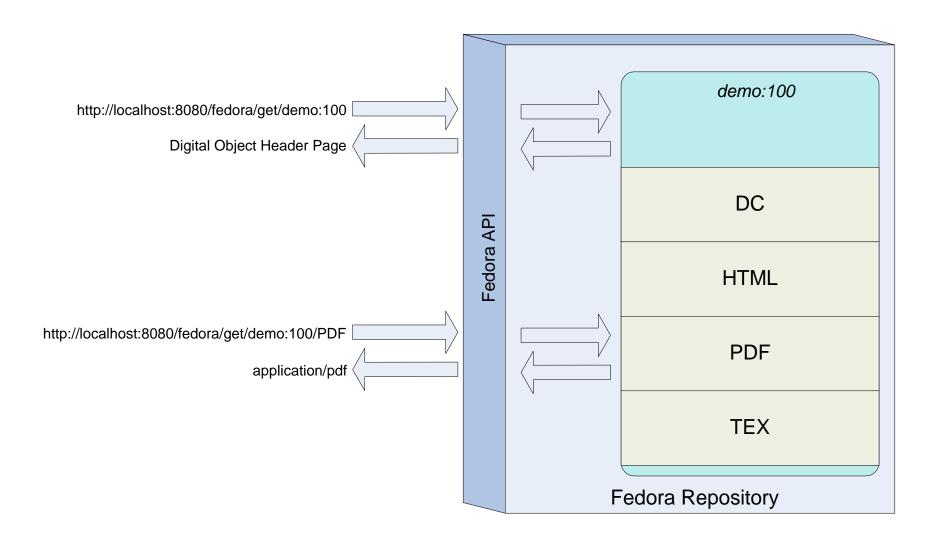
Fedora stores a name-spaced block of XML content within the Fedora digital object XML file.

Managed Content

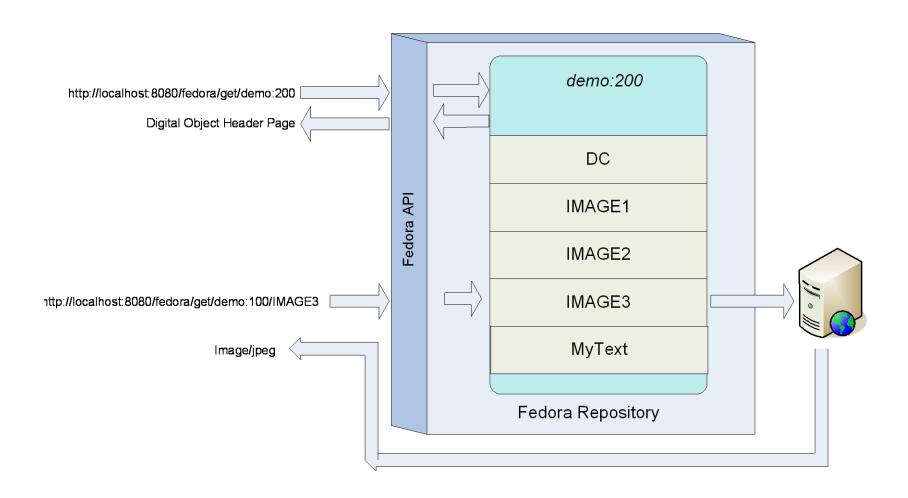
Fedora stores and manages the content bytestream (non-XML content)

External Referenced

Fedora stores a reference (URL) to the content


External Redirected

Fedora stores a reference (URL) to the content, but will not mediate access to content. (Optimized for streaming)


Simple Fedora model for aggregating static content

- Representations map to datastreams
- Datastreams may be local or surrogates (redirect) to remote data
- · REST URL's give client access to representations

Digital Object Aggregating Local Content

Digital Object for Local and Remote Content

Integrating Content and Web Services

What is a Web Service

- A software application
- Identified by a URI
- Interfaces and bindings described by XML
- Supports direct interactions with other software applications
- Messaging (request and response) based on XML
- Uses Internet protocols (e.g., HTTP)

Web Services Compents (SOAP)

- Simple Object Access Protocol
- XML-based RPC
- Uses XML for data encoding
- Defines
 - Message envelope
 - Encoding Rules
 - RPC Convention
 - Binding with underlying protocol

SOAP RPC Request Example

```
<SOAP-ENV:Envelope
   xmIns:SOAP-FNV="..."
   SOAP-ENV:encodingStyle="...">
  <SOAP-FNV:Header>
    <!-- Optional context information -->
  </SOAP-FNV:Header>
  <SOAP-ENV:Body>
    <m:GetLastTradePrice xmlns:m="some URI">
       < tickerSymbol> SUNW</tickerSymbol>
    </m:GetLa_stTradePrice>
  </SOA P-ENV:Body>
</SOAP-ENV:Envelope>
```

SOAP RPC Response Example

```
<SOAP-ENV:Envelope
   xmlns:SOAP-ENV="..."
   SOAP-ENV:encodingStyle="...">
  <SOAP-FNV:Header>
     <!-- Optional context information -->
  </SOAP-ENV:Header>
  <SOAP-ENV:Body>
   <m:GetLastTradePriceResponse xmlns:m="some_URI">
      <pri><price>30 .5</price>
   </m:GetLa stTradePriceResponse>
  </SOA P-ENV:Body>
</SOAP-ENV:Envelope>
```

Web Service Components - WSDL

- Web Services Description Language
- Components
 - Abstract Definition of operations and messages
 - Concrete binding to network protocol and endpoint address

Fedora for dynamic content

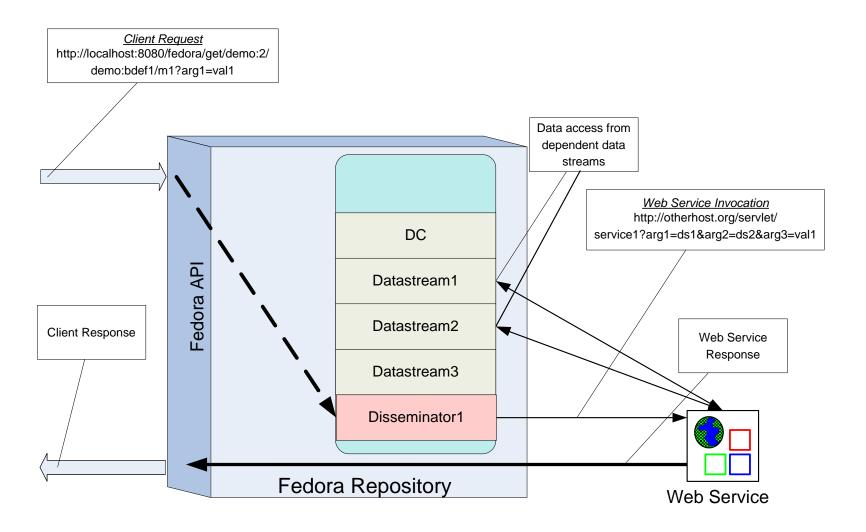
- Representations map to service-based transforms of data (in addition to static datastreams)
- Opaque to REST based access (client see only representations, not how they are produced)
- Motivating examples
 - Canonical XML metadata format XSLT to Dublin Core
 - Document source in TeX, programmatic transform to PDF, PS, HTML, etc.

Dynamic Content - The Big Picture

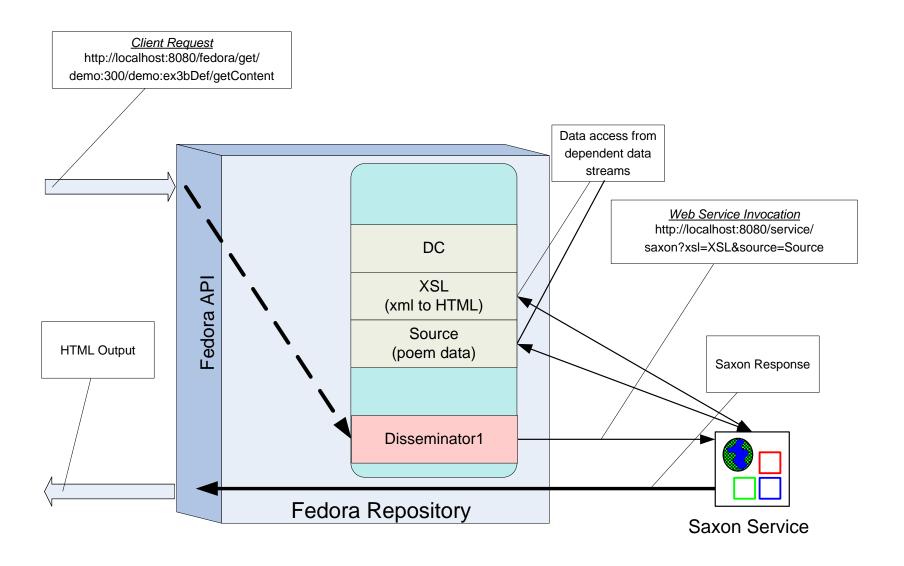
- From the client perspective they are just representations of the object
- 1 or more datastreams for the foundation of the dissemination
- These are parameters to a web service that produces the actual representation

Understanding Dynamic Disseminations (1)

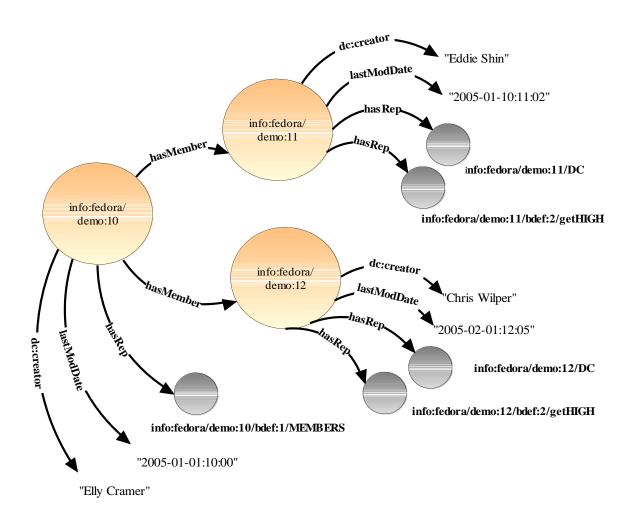
Dissemination Requests Client Uniform API, Data & Fedora Service Mediation Datastreams as data Data surrogates Web Transformation of data Service according to arguments


Understanding Dynamic Disseminations (2)

- Behavior Definitions (bDef)
 - Special digital object defining client side functionality (method template)
- Behavior Mechanism (bMech)
 - Special digital object that refines a bDef by defining:
 - · Data profile: set of datastreams required for execution
 - Service binding: where the work is performed
 - May be many bMechs for a bDef
- Disseminator
 - Association of a bMech/bDef with a digital object endowing it with bDef-defined functionality (methods)
 - A digital object may have multiple disseminators (polymorphic typing)


Understanding Dynamic Disseminations (3)

Dynamic Dissemination Access



Dynamic Dissemination Example

Fedora and Semantic Web: Resource Index Using RDF and ontologies

Fedora Digital Objects Resource Index View

Fedora and RDF

· Object-to-object and object-to-literal Relationships

- Ontology of common relationships (RDF schema)
- Relationships stored in special datastream (RELS-EXT)

· Resource Index (RI)

- RDF-based index of repository (Kowari triple-store)
- Graph-based index includes:
 - · Object properties and Dublin Core
 - · Object Relationships
 - · Object Disseminations

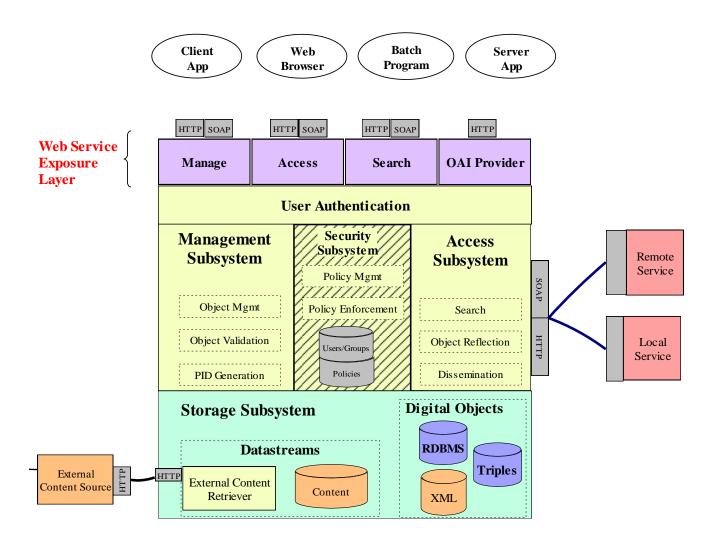
· RI Search

- Powerful querying of graph of inter-related objects
- REST-based query interface (using RDQL or ITQL)
- Results in different formats (triples, tuples, sparql)

Uses of Object Relationships

- Define collections (e.g., collection objects)
- Assert critical relationships among object for management purposes
- Enable network overlay
 - Surrogate objects referring to external entities
 - Assert relationships among them
 - Assert other relationships (e.g., annotations)
- Enable navigation of repository (as tree or graph)

Fedora Relationship Ontology (RDFS)


- isPartOf / hasPart
- isMemberOf / hasMember
- isDescriptionOf / hasDescription
- hasEquivalent
- · ... others

Demo:
Collection - Member Relationships

- Collection Object [smiley]
 - Datastream containing a query to Resource Index for all members of collection
- Image Objects [brush]
 - Use RELS-EXT datastream to assert relationship to collection object

Fedora Repository Service

Fedora Repository Service

Fedora Software Distribution

- · Open Source (Mozilla Public License)
- 100% Java (Sun Java J2SDK1.4)
- Supporting Technologies
 - Apache Tomcat and Apache Axis (SOAP)
 - Xerces for XML parsing and validation
 - Saxon for XSLT transformation
 - Schematron for validation
 - MySQL and Mckoi relational database
 - Oracle 9i support
 - Kowari for triple-store
- · Deployment Platforms
 - Windows 2000, NT, XP
 - Solaris
 - Linux
 - Mac OSX