WHERE YOU START
1: DATA MASSAGE

I'LL BE RIGHT BACK AFTER THESE MASSAGES.

MASSAGE THERAPIST

©2008 HTTP://BALOOCARTOONS.WORDPRESS.COM
FROM APIS

APIs are awesome!

…but they are rate limited.
A QUICK NOTE ON SCRAPING:

1. Read the privacy policy and robots.txt.
2. Ask permission if it makes sense.
3. Be nice.

Python libraries: urllib2, lxml, requests

For more: http://docs.python-guide.org/en/latest/scenarios/scrape/
EXTRACTING TEXT

Formats:
- CSV
- HTML
- XML
- JSON
- Etc.
EXTRACTING TEXT

Libraries:
- CSV: csv
- HTML: BeautifulSoup
- XML: BeautifulSoup
- JSON: json/simplejson
- Etc.: Have fun.
TOKENS

Use **nltk** and **sklearn**. Think about stopwords and text normalization (stemming or lemmatizing).
2: MAKING FEATURES

You now have words.

Now what?

Hint:
COUNT!

- Words (or TF-IDF)
- N-grams
- Letter n-grams

Caveat: lots of features
STRUCTURAL FEATURES

- Lengths of
 - words
 - sentences
 - utterances
 - documents
- Type/Token ratio
- ???
LEXICONS

For word list w and document d:
- does d contain words from w?
- how many?
- what proportion of d is words from w?
SAMPLE LEXICONS

- nltk.corpus.names – first names by gender
- Subjectivity Lexicon – list of English words and how subjective they are (http://mpqa.cs.pitt.edu/#subj_lexicon)
- Opinion Lexicon – list of 6800 positive and negative English opinions words (https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon)
- LIWC – so many lexicons. (http://liwc.wpengine.com/)

And many more…http://sentiment.christopherpotts.net/lexicons.html

<table>
<thead>
<tr>
<th>Strength</th>
<th>Length</th>
<th>Word</th>
<th>Part-of-speech</th>
<th>Stemmed</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>type=weaksubj</td>
<td>len=1</td>
<td>word1=abandoned</td>
<td>pos1=adj</td>
<td>stemmed1=n</td>
<td>priorpolarity=negative</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type=weaksubj</td>
<td>len=1</td>
<td>word1=abandonment</td>
<td>pos1=noun</td>
<td>stemmed1=n</td>
<td>priorpolarity=negative</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type=weaksubj</td>
<td>len=1</td>
<td>word1=abandon</td>
<td>pos1=verb</td>
<td>stemmed1=y</td>
<td>priorpolarity=negative</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type=strongsubj</td>
<td>len=1</td>
<td>word1=abase</td>
<td>pos1=verb</td>
<td>stemmed1=y</td>
<td>priorpolarity=negative</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SENTIMENT ANALYSIS

Finding the sentiment polarity of a word, sentence, or document (usually based on a lexicon)

Love this place. During grad school, I spent way too much money here holed up at Collegetown Bagels studying and just absorbing the environment. Has the classic crunchy granola feel of Ithaca and love that it’s a local small business. Prepare for long lines, crowded seating with lots of Cornell students, and great conversation.

Awesome coffee brewed to perfection, incredible bagel sandwiches, and all the desserts you could ever dream up.
HARD HITTERS

Part-of-speech tagging, parsing, sentiment labeling, and named entity recognition:

NLTK
textblob
Stanford CoreNLP

An ontology of words:
WordNet
3: SEMANTIC MODELS

This is where it gets weird.
WHAT’S A SEMANTIC MODEL?

semantic: referring to meaning in language or logic.

model: a description or analogy used to help visualize something (as an atom) that cannot be directly observed.
WHAT’S A SEMANTIC MODEL?

semantic model: a representation of meaning of words or chunks of text that takes less space than full-scale analysis of meaning.

(we get to ignore structure and parts of speech)
WHERE WE START

<table>
<thead>
<tr>
<th>Documents</th>
<th>→</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 2 0 0 0 1 5 0 3 1 0 1 0 0 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 2 0 3 0 1 1 0 2 1 1 0 2 1 1 0 6 1 2 0</td>
<td></td>
</tr>
<tr>
<td>1 3 0 2 0 0 2 0 2 9 0 0 1 0 0 0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 9 0 1 1 5 0 1 0 0 1 0 2 0 3 0 0 2</td>
<td></td>
</tr>
<tr>
<td>1 2 1 2 0 1 0 0 8 0 2 1 0 0 1 0 0 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

...
WHAT WE WANT

Representations of words and documents such that

- It’s easy to make them
- We can figure out which words are similar
- Similar documents have “close” representations
- Representations are small
METHOD 1: TOPIC MODELS

LINGUISTS HATE HIM!

This one weird trick will model the meaning in your text without having to keep track of word counts!
THE (GENERATIVE) STORY

You want to write speeches for this guy.
THE (GENERATIVE) STORY

Specifically, you want to write

\[M \text{ speeches } d_1 \ldots d_M \]

with \[N_m \text{ words in speech } m \]

about \[K \text{ topics} \]
WHAT’S A TOPIC?

For us: history, foreign policy, economics…

For our model: a probability distribution over words in a vocabulary V

e.g.

Topic 1: $P(\text{“china”}) = 0.2$, $P(\text{“mexico”}) = 0.1$, $P(\text{“wall”}) = 0.1$…

Topic 2: $P(\text{“i”}) = 0.5$, $P(\text{“great”}) = 0.1$, $P(\text{“sorry”}) = 0.0001$…
Before we start writing:
Pick our K topics over our vocab V
HOW WE WRITE

For each document m:

Pick a distribution over topics K

For each word in $1 \ldots N_m$:

Pick a topic:

Pick a word from that topic:

\rightarrow “huge”
REPEAT!

1: 8 → “huge”
2: 2 → “the”
3: 2 → “the”
4: 12 → “face”
5: 1 → “friends”
6: 19 → “russia”
7: 2 → “has”
...
N_m: 12 → “how”
NOW THE QUESTION:

Which topics would generate the documents you already have?
WHICH BRINGS US TO LDA

Latent DirichletAllocation (Blei et. al., 2003)

Latent: we can’t directly observe topics

Dirichlet: the kind of distribution we get our urns and dice from

Allocation: we allocate words by generating them from document and topic distributions
jsLDA
from David Mimno
PROS AND CONS

PROS
Already implemented
Models documents and words
Intuitive dimensions and representation meanings
Easy to-understand output

CONS
Can be slow
Nondeterministic
Awkward on really short documents
WHAT YOU NEED TO KNOW

Python tools exist to do this for you:
- gensim
- lda

Non-Python tools also exist:
- Mallet
- jsLDA
- Stanford TMT
LDA RECOMMENDATIONS

1. Have lots of decent-sized documents
2. Use 20-100 topics to start, then try other values
3. Remove stop words unless you really need them
4. If you have hyperparameter options, you want
 A. “Asymmetric” alpha (for document distribution over topics)
 B. “Symmetric” beta (for topic distribution over words)
 C. Adaptive hyperparameters if available; ~0.01 alpha, ~0.1 beta if not
METHOD 2: WORD EMBEDDINGS

@gchrupala embeddings are the sriracha sauce of NLP: it sounds like a good idea, you add too much, and now you're crying

9:44 AM - 5 Mar 2016
WHAT ARE WORD EMBEDDINGS?

Maps from words to points in a k-dimensional Euclidean space such that
- points close together in space are similar
- vectors can represent analogies:

e.g. $v(\text{king}) - v(\text{man}) + v(\text{woman}) = v(\text{queen})$
POPULAR SYSTEMS

• LSA (1988)
• LDA (2003)
• Turian embeddings (2009)
• SENNA (2010)
• word2vec (2013)
 • Skip-gram
 • CBOW
• GloVe (2014)
PROS AND CONS

PROS
Really good at modeling similarity
Easily clusterable
Pre-trained
Totally trendy

CONS
No obvious document representations
Slow to train
Requires LOTS of data
EMBEDDINGS IN PRACTICE

- Probably just use word2vec skip-gram.
- The original word2vec is ugly but fast; gensim is cool but slightly slower.
- Unless you have O(millions-billions) tokens, just use pretrained embeddings.

If you make new embeddings and want to see them:
- www.wordvectors.org
- t-SNE projections: see [scikit-learn, tsne](http://www.scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html)
EXERCISE CAUTION
QUESTIONS?

If you have questions about how to use these things,

PUT THEM ON PIAZZA!