Information Retrieval
INFO 4300 / CS 4300

- Last class (short class)
 - Issues for IR systems
 - Relevance
 - Evaluation
 - Users

Topics for Today

- Precision/recall exercise
- Search engine architecture
 - The indexing process
 - The querying process

In-Class Exercise

- Precision/Recall

Topics for Today

- Precision/recall exercise
- Search engine architecture
 - The indexing process
 - The querying process
Search Engine Architecture

- A **software architecture** consists of software components, the interfaces provided by those components, and the relationships between them.
 - describes a system at a particular level of abstraction
- Architecture of a search engine determined by two requirements:
 - **effectiveness** (quality of results) and **efficiency** (speed: response time and throughput)

Indexing Process

- **Text acquisition**
 - identifies and stores documents for indexing
- **Text transformation**
 - transforms documents into *index terms or features*
- **Index creation**
 - takes index terms and creates data structures (*indexes*) to support fast searching

Query Process
Query Process

- User interaction
 - supports creation and refinement of query, display of results
- Ranking
 - uses query and indexes to generate ranked list of documents
- Evaluation
 - monitors and measures effectiveness and efficiency (primarily offline)

Topics for Today

- Precision/recall exercise
- Search engine architecture
 - The indexing process
 - The querying process

Details: Text Acquisition

- Crawler
 - Identifies and acquires documents for search engine
 - Many types – web, enterprise, desktop
 - Web crawlers follow links to find documents
- Document crawlers for enterprise and desktop search
 » Follow links and scan directories
Text Acquisition

- **Feeds**
 - Real-time streams of documents
 - e.g., web feeds for news, blogs, video, radio, tv
 - RSS is common standard
 - RSS “reader” can provide new XML documents to search engine

- **Conversion**
 - Convert variety of documents into a consistent text plus metadata format
 - e.g. HTML, XML, Word, PDF, etc. → XML
 - Convert text encoding for different languages
 - Using a Unicode standard like UTF-8

Text Acquisition

- **Document data store**
 - Stores text, metadata, and other related content for documents
 - Metadata is information about document such as type and creation date
 - Other content includes links, anchor text
 - Provides fast access to document contents for search engine components
 - e.g. result list generation
 - Could use relational database system
 - More typically, a simpler, more efficient storage system is used due to huge numbers of documents

Text Transformation

- **Parser**
 - Processing the sequence of text tokens in the document to recognize structural elements
 - e.g., titles, links, headings, etc.
 - **Tokenizer** recognizes “words” in the text
 - must consider issues like capitalization, hyphens, apostrophes, non-alpha characters, separators
 - **Markup languages** such as HTML, XML often used to specify structure
 - Tags used to specify document elements
 - E.g., `<h2>` Overview `<h2>`
 - Document parser uses syntax of markup language (or other formatting) to identify structure

Text Transformation

- **Stopping**
 - Remove common words
 - e.g., “and”, “or”, “the”, “in”
 - Some impact on efficiency and effectiveness
 - Can be a problem for some queries

- **Stemming**
 - Group words derived from a common stem
 - e.g., “computer”, “computers”, “computing”, “compute”
 - Usually effective, but not for all queries
 - Benefits vary for different languages
Text Transformation

- **Link Analysis**
 - Makes use of *links* and *anchor text* in web pages
 - Link analysis identifies *popularity* and *community information*
 » e.g., PageRank, Hubs & Authorities
 - Anchor text can significantly enhance the representation of pages pointed to by links
 - Significant impact on web search
 » Less importance in other applications

- **Information Extraction**
 - Identify classes of index terms that are important for some applications
 » e.g., named entity recognizers identify classes such as *people, locations, companies, dates*, etc.

- **Classifier**
 - Identifies class-related metadata for documents
 » i.e., assigns labels to documents
 » e.g., topics, reading levels, sentiment, genre
 - Use depends on application

Index Creation

- **Document Statistics**
 - Gathers counts and positions of words and other features
 - Ranking algorithm uses to compute doc scores

- **Weighting**
 - Computes weights for index terms
 - Used in ranking algorithm
 - e.g., *tf.idf* weight
 » Combination of *term frequency* in document and *inverse document frequency* in the collection

- **Inversion**
 - Core of indexing process
 - Converts document-term information to term-document for indexing
 » Difficult for very large numbers of documents
 - Format of inverted file is designed for fast query processing
 » Must also handle updates
 » Compression used for efficiency
Index Creation

- Index Distribution
 - Distributes indexes across multiple computers and/or multiple sites on a network
 - Essential for fast query processing with large numbers of documents
 - Many variations
 - Document distribution, term distribution, replication
 - P2P and distributed IR involve search across multiple sites

Topics for Today

- Precision/recall exercise
- Search engine architecture
 - The indexing process
 - The querying process

User Interaction

- Query input
 - Provides interface and parser for query language
 - Most web queries are very simple (few operators), other applications may use forms
 - Query language used to describe more complex queries and results of query transformation
 - e.g., Boolean queries, Indri and Galago query languages
 - similar to SQL language used in database applications
 - IR query languages also allow content and structure specifications, but focus on content

User Interaction

- Query transformation
 - Improves initial query, both before and after initial search
 - Includes text transformation techniques used for documents (e.g. tokenization, stopping)
 - Spell checking and query suggestion provide alternatives to original query
 - Query expansion and relevance feedback modify the original query with additional terms
User Interaction

- **Results output**
 - Constructs the display of ranked documents for a query
 - Generates *snippets* to show how queries match documents
 - *Highlights* important words and passages
 - Retrieves appropriate *advertising* in many applications
 - May provide *clustering* and other visualization tools

Ranking

- **Scoring**
 - Calculates scores for documents using a ranking algorithm
 - Core component of search engine
 - Basic form of score is \(\sum q_i d_i \)
 - \(q_i \) and \(d_i \) are query and document term weights for term \(i \)
 - Many variations of ranking algorithms and retrieval models

Ranking

- **Performance optimization**
 - Designing ranking algorithms for efficient processing
 - Term-at-a-time vs. document-at-a-time processing
 - Safe vs. unsafe optimizations
- **Distribution**
 - Processing queries in a distributed environment
 - *Query broker* distributes queries and assembles results
 - *Caching* is a form of distributed searching

Evaluation

- **Logging**
 - Logging user queries and interaction is crucial for improving search effectiveness and efficiency
 - *Query logs* and *clickthrough data* or *dwell time* used for query suggestion, spell checking, query caching, ranking, advertising search, and other components
- **Ranking analysis**
 - Measuring and tuning ranking effectiveness
- **Performance analysis**
 - Measuring and tuning system efficiency
How Does It *Really* Work?

- This course explains these components of a search engine in more detail
- Often many possible approaches and techniques for a given component
 - Focus is on the most important alternatives
 » i.e., explain a small number of approaches in detail rather than many approaches
 - “Importance” based on research results and use in actual search engines