Stemming

- Many morphological variations of words
 - *inflectional* (plurals, tenses)
 - *derivationa* (making verbs nouns etc.)
- In most cases, these have the same or very similar meanings
- Stemmers attempt to reduce morphological variations of words to a common stem
 - usually involves removing suffixes
- Can be done at indexing time or as part of query processing (like stopwords)

Stemming

- Generally a small but significant improvement in effectiveness
 - can be crucial for some languages
 - e.g., 5-10% improvement for English, up to 50% in Arabic

<table>
<thead>
<tr>
<th>kitab</th>
<th>a book</th>
</tr>
</thead>
<tbody>
<tr>
<td>kitabi</td>
<td>my book</td>
</tr>
<tr>
<td>alkitab</td>
<td>the book</td>
</tr>
<tr>
<td>ktabuki</td>
<td>your book (f)</td>
</tr>
<tr>
<td>kitabula</td>
<td>your book (m)</td>
</tr>
<tr>
<td>kitabuha</td>
<td>his book</td>
</tr>
<tr>
<td>kataba</td>
<td>to write</td>
</tr>
<tr>
<td>maktaba</td>
<td>library, bookstore</td>
</tr>
<tr>
<td>maktab</td>
<td>office</td>
</tr>
</tbody>
</table>

Words with the Arabic root *ktb*

Stemming

- Two basic types
 - **Dictionary-based**: uses lists of related words
 - **Algorithmic**: uses program to determine related words
- Algorithmic stemmers
 - *suffix-s*: remove ‘s’ endings assuming plural
 - e.g., cats → cat, lakes → lake, wiis → wii
 - Many *false positives*: supplies → supplie, ups → up
 - Some *false negatives*: mice → mice (should be mouse)

Porter Stemmer

- Algorithmic stemmer used in IR experiments since the 70s
- Consists of a series of rules designed to strip off the longest possible suffix at each step
- Effective in TREC
- Produces *stems* not *words*
- Makes a number of errors and difficult to modify
Porter Stemmer

- Example step (1 of 5)

 Step 1a:
 - Replace *s* by *s* (e.g., stresses → stress).
 - Delete *e* if the preceding word part contains a vowel not immediately before the *s* (e.g., gaps → gap but gas → gas).
 - Replace *ed or ies* by *i* if preceded by more than one letter, otherwise by *e* (e.g., ties → tie, cries → cri).
 - If suffix is *us or *s* do nothing (e.g., stress → stress).

 Step 1b:
 - Replace *eed, eedly* by *e* if it is in the part of the word after the first non-vowel following a vowel (e.g., agreed → agree, feed → feed).
 - Delete *ed, edly, ing, ingly* if the preceding word part contains a vowel, and then if the word ends in *at, bl* or *iz* add *e* (e.g., fished → fish, pirating → pirate), or if the word ends with a double letter that is not *ll*, *ss* or *zz*, remove the last letter (e.g., falling → fall, dripping → drip), or if the word is short, add *e* (e.g., hoping → hope).
 - Whew!

Let's try it

Original text:
Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Porter stemmer:
document describ market strategi carri compani agricultur chemic report predict market share chemic report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share stimul demand price cut volum sale

Let's try it

Porter Stemmer

False positives	False negatives
organization/organ | european/europe
generalization/generic | cylinder/cylindrical
numerical/numerous | matrices/matrix
policy/police | urgency/urgent
university/universe | create/creation
addition/additive | analysis/analyses
negligible/negligent | useful/usefully
execute/executive | noise/noisy
past/paste | decompose/decomposition
ignore/ignorant | sparse/sparisty
special/specialized | resolve/resolution
broad/bounding | triangle/triangular

- Porter2 stemmer addresses some of these issues
- Approach has been used with other languages
Krovetz Stemmer

- Hybrid algorithmic-dictionary-based method
 - Word checked in dictionary
 » If present, either left alone or stemmed based on its manual “exception” entry
 » If not present, word is checked for suffixes that could be removed
 » After removal, dictionary is checked again
- Produces words not stems
- Comparable effectiveness
- Lower false positive rate, somewhat higher false negative

Stemmer Comparison

Original text:
Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Porter stemmer:
document describ market strategi carri compani agricultur chemic report predict market share chemic report market statis agrochem pesticid herbicid fungicid insecticid fertil predict sale market share stimul demand price cut volum sale

Krovetz stemmer:
document describe marketing strategy carry company agriculture chemical report prediction market share chemical report market statistic agrochem pesticide herbicide fungicide insecticide fertilizer predict sale stimul sale demand price cut volum sale

Next

- Phrases
- Document structure
- Link analysis

We’ll skip “phrases” until the next class.
Document Structure and Markup

- Some parts of documents are more important than others
- Document parser recognizes structure using markup, such as HTML tags
 - Headers, anchor text, bolded text all likely to be important
 - Metadata can also be important
 - Links used for *link analysis*

Example Web Page

```
<html>
<head>
<meta name="keywords" content="Tropical fish, Airstone, Albinism, Algae eater, Aquarium, Aquarium Fish Feeder, Aquarium furniture, Aquascaping, Fish treatment (fishkeeping), Berlin Method, Biotope"/>
<title>Tropical fish - Wikipedia, the free encyclopedia</title>
</head>
<body>
<h1 class="firstHeading">Tropical fish</h1>
<p>Tropical fish include fish found in tropical environments around the world, including both freshwater and saltwater species. Fishkeepers often use the term <i>tropical fish</i> to refer only those requiring fresh water, with saltwater tropical fish referred to as <i>marine fish</i>.

Tropical fish are popular aquarium fish, due to their often bright coloration. In freshwater fish, this coloration typically derives from <i>iridescence</i>, while saltwater fish are generally <i>pigmented</i>.
```

Example Web Page

```
<p>Links are a key component of the Web</p>
<p>Important for navigation, but also for search</p>
  - e.g., <a href="http://example.com">Example website</a>
  - “Example website” is the anchor text
  - “http://example.com” is the destination link
  - both are used by search engines
```
Anchor Text

- Used as a description of the content of the destination page
 - i.e., collection of anchor text in all links pointing to a page used as an additional text field
- Anchor text tends to be short, descriptive, and similar to query text
- Retrieval experiments have shown that anchor text has significant impact on effectiveness for some types of queries
 - i.e., more than PageRank

PageRank

- Billions of web pages, some more informative than others
- Links can be viewed as information about the popularity (authority?) of a web page
 - can be used by ranking algorithm
- Inlink count could be used as simple measure
- Link analysis algorithms like PageRank provide more reliable ratings
 - less susceptible to link spam

Random Surfer Model

- Browse the Web using the following algorithm:
 - Choose a random number \(r \) between 0 and 1
 - If \(r < \lambda \):
 » Go to a random page
 - If \(r \geq \lambda \):
 » Click a link at random on the current page
 - Start again
- PageRank of a page is the probability that the “random surfer” will be looking at that page
 - links from popular pages will increase PageRank of pages they point to

Dangling Links

- Random jump guarantees that all pages on the Internet will eventually be reached
 - prevents getting stuck on pages that
 » do not have links
 » contain only links that no longer point to other pages
 » have links forming a loop
- Links that point to the first two types of pages are called dangling links
- Each web page has a PageRank
PageRank

- Ignoring the “surprise me” button, PageRank (PR) of page C = \(PR(A)/2 + PR(B)/1 \)
- More generally,
 \[
 PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L_v}
 \]
 where \(B_u \) is the set of pages that point to \(u \), and \(L_v \) is the number of outgoing links from page \(v \) (not counting duplicate links).

\[\text{PageRank}\]

- Taking random page jump into account, 1/3 chance of going to any page when \(r < \lambda \)
- \(PR(C) = \lambda/3 + (1 - \lambda) \cdot (PR(A)/2 + PR(B)/1) \)
- More generally,
 \[
 PR(u) = \frac{\lambda}{N} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{L_v}
 \]
 where \(N \) is the number of pages, \(\lambda \) typically 0.15

PageRank

- Don’t know PageRank values at start
- Assume equal values (1/3 in this case), then iterate:
 - first iteration: \(PR(C) = 0.33/2 + 0.33 = 0.5 \), \(PR(A) = 0.33 \), and \(PR(B) = 0.17 \)
 - second: \(PR(C) = 0.33/2 + 0.17 = 0.33 \), \(PR(A) = 0.5 \), \(PR(B) = 0.17 \)
 - third: \(PR(C) = 0.42 \), \(PR(A) = 0.33 \), \(PR(B) = 0.25 \)
- Converges to \(PR(C) = 0.4 \), \(PR(A) = 0.4 \), and \(PR(B) = 0.2 \)

\[
\text{PageRank}
\]

```python
1: procedure PAGE-RANK(G)
2: \( \triangleright \) G is the web graph, consisting of vertices (pages) and edges (links).
3: \( (P, L) \rightarrow G \) \( \triangleright \) Split graph into pages and links
4: \( I \leftarrow \text{a vector of length } |P| \) \( \triangleright \) The current PageRank estimate
5: \( R \leftarrow \text{a vector of length } |P| \) \( \triangleright \) The resulting better PageRank estimate
6: for all entries \( I_u \in I \) do \( \triangleright \) Start with each page being equally likely
7: \( I_u \leftarrow 1/|P| \)
8: end for
9: while \( R \) has not converged do
10: for all entries \( R_u \in R \) do
11: \( R_u \leftarrow \lambda/|P| \) \( \triangleright \) Each page has a \( \lambda/|P| \) chance of random selection
12: end for
13: for all pages \( p \in P \) do
14: \( Q \leftarrow \text{the set of pages such that } (p, q) \in L \text{ and } q \in P \)
15: if \( |Q| > 0 \) then
16: \( R_u \leftarrow R_u + (1 - \lambda)I_q/|Q| \) \( \triangleright \) Probability \( I_q \) of being at page \( p \)
17: end if
18: end for
19: else
20: for all pages \( q \in P \) do
21: \( R_u \leftarrow R_u + (1 - \lambda)I_q/|P| \)
22: end for
23: end if
24: \( I \leftarrow R \) \( \triangleright \) Update our current PageRank estimate
25: end for
26: end while
27: return \( R \)
28: end procedure
```