Random numbers

Clearly a number that is produced on the computer in a deterministic way cannot be truly random. So a valid question is what do we mean by a “random number” and how can we test it?

We consider pseudo-random numbers that share some properties with random numbers but obviously are reproducible on the computers and therefore are not truly random.

A useful definition of true random numbers is lack of correlations. If we consider the product of two random numbers \(r_1 \) and \(r_2 \), \(r_1 \cdot r_2 \) and we average over possible values of \(r_1 \) and \(r_2 \), we should have \(\langle r_1 \cdot r_2 \rangle = \langle r_1 \rangle \langle r_2 \rangle \).

So a test for a random number generator would be

\[
\prod_{i=1}^{N} r_i = \prod_{i=1}^{N} \langle r_i \rangle
\]

Essentially all the existing random number generators fail eventually on this kind of test. The common generators are cyclic in nature. There is an \(L \) -- large integer such that \(r_{i+L} = r_i \), hence the number of random numbers that can be generated is finite.

Widely used random number generators are based on the following simple (and fast) operations:

\[I_{k+1} = \alpha I_k + \beta \pmod{m} \]

The integers \(I_k \) are between zero and \(m-1 \). Dividing by \(m \) provides a floating point between 0 and 1. If all is well the sequence of the integers is uniformly distributed at the interval \([0,1]\)

Example: \(\alpha = 2,147,437,301 \quad \beta = 453,816,981 \quad m=2^{32} \)

- Using random numbers suggests a procedure to estimate \(\pi \)

To improve the quality and the “randomness” of numbers generated by the above procedure it is useful to have a long vector of random numbers and to shuffle them (randomly)

In MATLAB

\text{Rand}(n,m)\ provide\ an\ nxm\ matrix\ of\ random\ numbers.

The above procedure provides random numbers generated from a uniform distribution. Can we generate random numbers from other probability distribution (e.g. normal)?
A general procedure for doing it is based on the probability function. Let $p(x)dx$ be the probability of finding x between x and $x + dx$. Suppose that we want to generate a series of points x and then compute a function of these points $y(x)$. What will be the distribution of the y-s? It will be connected to the probability function of the x-s.

$$p(x)dx = p(y)|dy|$$

$$p(y) = p(x) \left| \frac{dx}{dy} \right|$$

Example: suppose $y(x) = -\log_e(x)$

$$p(y)dy = \left| \frac{dx}{dy} \right| = e^{-y}dy$$

Another example: Gaussian

We want

$$p(y)dy = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{y^2}{2} \right] dy$$

select

$$y_1 = \sqrt{-2\log(x)} \cos(2\pi x_2)$$

$$y_2 = \sqrt{-2\log(x)} \sin(2\pi x_2)$$

$$x_1 = \exp\left[-\left(y_1^2 + y_2^2 \right) / 2 \right]$$

$$x_2 = \frac{1}{2\pi} \arctan\left(\frac{y_2}{y_1} \right)$$

$$\begin{vmatrix}
\frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\
\frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2}
\end{vmatrix} = -\left[\frac{1}{\sqrt{2\pi}} \exp(-y_1^2 / 2) \right] \left[\frac{1}{\sqrt{2\pi}} \exp(-y_2^2 / 2) \right]$$

Note that there is one-to-one correspondence between x and y