
1

1

Lecture 2: Pairwise sequence alignment*

• Biological motivation

• The notion of sequence similarity and alignment

• The algorithm that computes them: dynamic programming (DP)

For the dynamic programming technique

• Intuitive and formal definition of the recursive process

• The algorithm

• Discussion of time and space complexity

*Thanks to Prof. Ron Shamir http://www.math.tau.ac.il/~rshamir/algmb/01/algmb01.html 2

Biological motivations
•A large variety of biology motivated problems in computer science
involve sequences (character strings). For instance:

•Reconstructing long sequences of DNA from overlapping
fragments

•Comparing two or more sequences for similarities

•Searching data bases for related sequences and sub sequences

•Exploring frequently occurring patterns of nucleotides

• Finding informative elements in protein and DNA sequences

This research aims at learning about the functionality or structure of
a protein without experimenting in the lab. The idea being that
similar sequences produce similar proteins

3

Resemblance and difference of sequences
The resemblance of two DNA sequences taken from
different organisms, is explained by the theory that all
genetic material has a common ancestral DNA.

Differences between contemporary species are due to
mutations occurring in the course of evolution.

Many of the changes are local and can be either

• Insertion – insert a letter to the sequence (character string)

• Deletion – delete a base (letter) from the DNA chain

• Substitution – replace one sequence base by another

Insertions and deletions (InDel) are the reverse of each other
4

• Distance derives its definition from the concept of mutations
by assigning weight to each mutation: Given two sequences
the distance between them is the minimal sum of weights for
the set of mutations that transform one sequence to another.

• For similarity we assign weights corresponding to base
resemblance: Given two sequences the similarity between
them is the maximal sum of such weights.

Distance and Similarity

5

The Simplest Model: Edit Distance
Definition: The edit distance between two sequences is the
minimal number of edit operations (indel, substitutions)
needed to transform one sequence to the other.

Example: Given two sequences a c c t g a and a g c t a

The minimal number of edit operations is 2

Delete g

Substitute c
with g

a g c t - aa g c t a

a g c t g aa g c t g a

a c c t g aa c c t g a

6

Alignment
Definition: An alignment of two sequences S and T is obtained by
placing the two sequences one above the other (allowing insertions of
spaces), so that every character (or space) in one sequence has a
unique character (or space) in the other sequence.

In the alignment model, each two char-char or char-space alignment
are given a score, and the goal is to minimize the score.

Example: The aligned sequences

S1: GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT

S2: GTAGAACGGCTTCAGTTG- - -TCACAGCGTTC-

Dist1: match 0, substitution 1, indel 2 => dist1 = 14.

Dist2: match 0, d(A,T)=d(C,G)=1,d(A,G)=1.5,indel=2 => dist2=14.5

Similarity: match 1, substitution 0, indel=-1.5 => similarity=16.5

2

7

1. Global alignment
In global alignment the whole sequences are aligned (allowing
spaces) to maximize similarity of the sequences.

Input: Two sequences S=S[1..m], T=T[1..n], (m and n are
approximately the same).

Notation: M[x,y] is the score of aligning character x with character
y, for every two characters in the alphabet, including spaces.

Notation: V[j,k] denotes the score of the optimal alignment of the
prefixes S[1..j] and T[1..k].

V[S,T] denotes the score of the optimal alignment of S and T.

We will give a recursive description of V[S,T], show how to
compute it, and consequently get the best alignment.

8

Lemma: Let V[j,k] be the optimal alignment score of S[1..j] with
T[1..k]. Then V[S,T]=V[m,n] has the following properties:

Base conditions: V[j,0] = Σ M[sr,-], r=0..j

V[0,k] = Σ M[-,tr], r=0..k

Recursive relation: for each j in [1..m], and k in [1..n]

V[j-1,k-1] + M[sj,tk]

V[j,k) = max V[j-1,k] + M[sj,-]

V[j,k-1] + M[-,tk]

This is the Dynamic Programming formulation of the best
alignment problem

9

Tabular computation of the best score and an optimal
alignment

We compute the table V[0..m,0..n] from low indices to m and n.
V[m,n] will be the score of the best alignment, and the path in the
table will give the best alignment

Compute V[0,k] and V[j,0] for all j, and for all k, in 1..m, 1..n,
resp.

For j=1 to m

For k=1 to n

Calculate V[j,k] using V[j-1,k-1],V[j-1,k],V[j,k-1]

using the MAX equation seen before.
10

Example: Align “CATGT” and “ACGCTG”.

Values: match 2, mismatch and space –1

-6G6
-5T5
-4C4
-3G3
-2C2

1-1-1A1
-5-4-3-2-100
TGTACj
543210k

11

230-3-3-6G6
301-2-2-5T5
11-1-1-1-4C4
12-100-3G3
-2-1001-2C2
-2-101-1-1A1
-5-4-3-2-100
TGTACj
543210k

Filling the matrix and finding the best score V[6,5]=2

The best score for aligning S and T
12

230-3-3-6G6
301-2-2-5T5
11-1-1-1-4C4
12-100-3G3
-2-1001-2C2
-2-101-1-1A1
-5-4-3-2-100
TGTACj
543210k

Backtracking the paths from V[6,5] to V[0,0] to find the good
alignments

CATG - T -
- ACGCTG

The high path gives the
alignment

3

13

Time and space complexity

•Clearly the computation of V take O(mn) time.

•And the space needed is O(mn) if backtrack is required.

•Space is easily reduced to O(m+n) if just the score V[m,n] is
required

For huge length DNA the space is a bottleneck. Hirschberg [1]
developed a space reduction algorithm for the dynamic
programming reducing the O(mn) space to O(min(m,n)).

[1] D.S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM.
24:664-675, 1977 14

Models of alignment
We will talk on four alignment problems and their solutions:

1. Global alignment – Sequences S and T are roughly the same length.
What is their similarity? Find the best alignment.

2. Local alignment. For any S and T, what is the maximum similarity
between subsequences of S and T. Find most similar subsequences.

3. Ends free alignment. Find the best alignment between subsequences
of S and T, when at least one subsequence is a prefix of the original
sequence, and the other is a suffix. (Will be taught in section.)

4. Gap penalty. Find a best alignment between S and T using the gap
penalty function

Definition. A gap is a maximal contiguous run of spaces in a single
sequence within a given alignment. A gap penalty function is a
function that measures the cost of a gap as a function of its length.

15

2. Local alignment
In many applications sequences are not highly similar as a whole
but they may contain subsequences with high resemblance.

Problem definition: Given two sequences S=S[1..m], T=T[1..n],
find the subsequences α of S and β of T, whose (global) similarity
is maximal over all subsequences.

Motivation:

• In DNA non-coding regions (introns) are subject to more
mutations than coding regions (exons). Search for local alignment
of two DNA stretches is more likely to find the best match between
two exons.

• Proteins of different kinds and of different species often exhibit
local similarities which might be “functional subunits” of the
protein. Finding these domains is done by local alignment.

16

Computing local alignment
Definition. Given two sequences, S and T, and two indices, j and k,
the local suffix alignment problem is finding a (possibly empty) suffix
α of S[1..j] and β of T[1..k] such that the value of their alignment is
maximal over alignments of all suffixes of S[1..j] and T[1..k] .

• The solution of the local alignment is the maximal solution for the
local suffix alignment over all indices j and k.

Terminology and restrictions

• V[j,k] denotes the value of the optimal local suffix alignment for j,k

• The weights of the editing operations are limited by

M[x,y] >= 0 if x and y match

M[x,y] <= 0 if x,y do not match or one of them is a space

17

•Base conditions: V[j,0] = 0 , V[0,k] = 0 for each j,k

•Recursive relation: for each j in [1..m], and k in [1..n]

0

V[j-1,k-1] + M[sj,tk]

•V[j,k) = max V[j-1,k] + M[sj,-]

V[j,k-1] + M[-,tk]

•Compute j’ and k’ such that V[j’,k’] = max {V[j,k] | for all j,k}

The recursive formulation is very similar to that of
global alignment

18

Example: Locally align “CATGT” and “ACGCTG”.

Values: match 2, mismatch and space –1

452000G6
323110T5
010120C4
120110G3
001120C2
001200A1
0000000
TGTACj
543210k

CATG
C- TGResult: V[6,4] is maximal

4

19

Gap Penalty - definitions
A gap is a maximal consecutive run of spaces in an alignment.

Gaps help create alignments that conform better to biological models,
and fit patterns that one expects to find in meaningful alignments.

We denote the number of gaps in an alignment by #gaps.
The length of a gap is the number of indel operaions in it.

Example:
S = ATTC - - GA–TGGACC
T = A - -CGTGATT - - - CC

This alignment can be described as having 7 matches, no mismatch, 4
gaps and 8 spaces (indel).

20

Various gap penalty models
1. The gap penalty we used so far was a linear function of gap length:

#indel*indel_cost

2. We might want to asign the whole gap a constant cost Wg.

Here the cost of a space is zero, M[j,-], M[-,k] = 0.

Now we get S’ and T’ after the spaces have been inserted to S and T
respectively, and have to find an alignment that maximizes

Σk {M(S’[k],T’[k])} +Wg*(#gaps)

3. In affine gap penalty we assign a cost Wo for “openning” a gap and
a cost We for “extending” a gap. The penalty of one gap of length q is

Wtotal = Wo + qWe

21

Affine gap penalty algorithm
Similar to constant gap penalty the goal now is to find an
alignment that maximizes

Σk {M(S’[k],T’[k])} + Wo *(#gaps) +We*(#spaces)

To align sequences S and T, consider the prefixes S[1..j], T[1..k]

They can be aligned in 3 different ways

1. S _________j

T_________k

2. S_________j--------

T______________k

3. S__________j

T_______k---- 22

Let us denote by

• G[j,k] the maximum value of any alignment of type 1

• E[j,k] the maximum value of any alignment of type 2

• F[j,k] the maximum value of any alignment of type 3

• V[j,k] the maximum value of an alignment

We will define 3 recurrence relations and proceed to the
alignment table as before

23

Take E[j,k] for example

2. S_________j--------

T______________k

There are two possible cases for the previous alignment

(i) It looked the same (was type 2). In this case we need only to
add extension value We forming E[j,k-1]+ We

(ii) It looked like type 1, in this case we need to add gap opening
cost and gap extension, so the new cost is V[j,k-1]+ Wo+ We

E[j,k]= max {E[j,k-1]+ We , V [j,k-1]+ Wo+ We }

G and F are calculated similarly, and V just takes the maximum
over all three. Hence,

24

The recursive definition:

Base conditions: V[0,0] = 0

V[j,0] = F[j,0] = Wo+j*We

V[0,k] = E[0,k] = Wo+k*We

F[0,i]=E[i,0] = - ∞

Recurrence relations:

V[j,k] = max {E[j,k], F[j,k], G[j,k]}

where G[j,k] = V[j-1,k-1] + M[S[j], T[k]]

E[j,k]= max {E[j,k-1]+ We , V [j,k-1]+ Wo+ We }

F[j,k]= max {F[j-1,k]+ We , V [j-1,k]+ Wo+ We }

Time and space complexity O(mn) as before.

