1 Introduction

For the next few lectures, we will build tools to solve linear systems. Our main tool will be the factorization $PA = LU$, where P is a permutation, L is a unit lower triangular matrix, and U is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a first linear algebra class implicitly computes this decomposition; but by thinking about the decomposition explicitly, we find other ways to organize the computation.

2 Triangular solves

Suppose that we have computed a factorization $PA = LU$. How can we use this to solve a linear system of the form $Ax = b$? Permuting the rows of A and b, we have

$$PAx = LUx = Pb,$$

and therefore

$$x = U^{-1}L^{-1}Pb.$$

So we can reduce the problem of finding x to two simpler problems:

1. Solve $Ly = Pb$
2. Solve $Ux = y$

We assume the matrix L is unit lower triangular (diagonal of all ones + lower triangular), and U is upper triangular, so we can solve linear systems with L and U involving forward and backward substitution.

As a concrete example, suppose

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \quad d = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

To solve a linear system of the form $Ly = d$, we process each row in turn to find the value of the corresponding entry of y:

1. Row 1: $y_1 = d_1$
2. Row 2: $2y_1 + y_2 = d_2$, or $y_2 = d_2 - 2y_1$

3. Row 3: $3y_1 + 2y_2 + y_3 = d_3$, or $y_3 = d_3 - 3y_1 - 2y_2$

More generally, the forward substitution algorithm for solving unit lower triangular linear systems $Ly = d$ looks like

```python
function forward_subst_unit(L, d)
    y = copy(d)
    n = length(d)
    for i = 2:n
        y[i] = d[i] - L[i,1:i-1]'*y[1:i-1]
    end
    y
end
```

Similarly, there is a backward substitution algorithm for solving upper triangular linear systems $Ux = d$

```python
function backward_subst(U, d)
    x = copy(d)
    n = length(d)
    for i = n:-1:1
        x[i] = (d[i] - U[i,i+1:n]'*x[i+1:n])/U[i,i]
    end
    x
end
```

Each of these algorithms takes $O(n^2)$ time.

3 Gaussian elimination by example

Let’s start our discussion of LU factorization by working through these ideas with a concrete example:

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix}. $$

To eliminate the subdiagonal entries a_{21} and a_{31}, we subtract twice the first row from the second row, and thrice the first row from the third row:

$$A^{(1)} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \cdot 4 & 0 \cdot 7 \\ 2 & 1 & 2 \cdot 4 & 2 \cdot 7 \\ 3 \cdot 1 & 3 \cdot 4 & 3 \cdot 7 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix}. $$
That is, the step comes from a rank-1 update to the matrix:

\[A^{(1)} = A - \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \end{bmatrix}. \]

Another way to think of this step is as a linear transformation

\[A^{(1)} = M_1 A, \]

where the rows of \(M_1 \) describe the multiples of rows of the original matrix that go into rows of the updated matrix:

\[M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = I - \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = I - \tau_1 e_1^T. \]

Similarly, in the second step of the algorithm, we subtract twice the second row from the third row:

\[\begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix} = \left(I - \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \right) A^{(1)}. \]

More compactly: \(U = (I - \tau_2 e_2^T) A^{(1)}. \)

Putting everything together, we have computed

\[U = (I - \tau_2 e_2^T)(I - \tau_1 e_1^T) A. \]

Therefore,

\[A = (I - \tau_1 e_1^T)^{-1}(I - \tau_2 e_2^T)^{-1} U = LU. \]

Now, note that

\[(I - \tau_1 e_1^T)(I + \tau_1 e_1^T) = I - \tau_1 e_1^T + \tau_1 e_1^T - \tau_1 e_1^T \tau_1 e_1^T = I, \]

since \(e_1^T \tau_1 \) (the first entry of \(\tau_1 \)) is zero. Therefore,

\[(I - \tau_1 e_1^T)^{-1} = (I + \tau_1 e_1^T) \]

Similarly,

\[(I - \tau_2 e_2^T)^{-1} = (I + \tau_2 e_2^T) \]

Thus,

\[L = (I + \tau_1 e_1^T)(I + \tau_2 e_2^T). \]
Now, note that because τ_2 is only nonzero in the third element, $e_1^T\tau_2 = 0$; thus,

$$L = (I + \tau_1e_1^T)(I + \tau_2e_2^T)$$

$$= (I + \tau_1e_1^T + \tau_2e_2^T + \tau_1(e_1^T\tau_2)e_2^T)$$

$$= I + \tau_1e_1^T + \tau_2e_2^T$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

The final factorization is

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} = LU.$$

The subdiagonal elements of L are easy to read off: for $i > j$, l_{ij} is the multiple of row j that we subtract from row i during elimination. This means that it is easy to read off the subdiagonal entries of L during the elimination process.

4 Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for LU factorization. We will leave the issue of pivoting to a later discussion. We’ll start with a purely loop-based implementation:

```plaintext
# Overwrites a copy of A with L and U
function my_lu(A)
    A = copy(A)
    m, n = size(A)
    L = UnitLowerTriangular(A) # View on A for tracking multipliers
    U = UpperTriangular(A) # Upper triangular view on A
    for j = 1:n-1
        for i = j+1:n
            # Figure out multiple of row j to subtract from row i
```
16
17 \# Subtract off the appropriate multiple
18 for k = j+1:n
19 \[A[i,k] -= L[i,j]*A[j,k] \]
20 end
21 end
22 end
23
24 L, U
25 end

We can write the two innermost loops more concisely in terms of a Gauss transformation \(M_j = I - \tau_j e_j^T \), where \(\tau_j \) is the vector of multipliers that appear when eliminating in column \(j \):

1 #
2 # Overwrites a copy of A with L and U
3 #
4 function my_lu2(A)
5 A = copy(A)
6 m, n = size(A)
7 L = UnitLowerTriangular(A) # View on A for tracking multipliers
8 U = UpperTriangular(A) # Upper triangular view on A
9 for j = 1:n-1
10 # Form vector of multipliers
11 L[j+1:n,j] ./= A[j,j]
12
13 # Apply Gauss transformation
15 end
16 end
17 L, U
18 end

5 Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find A^{-1} using Gaussian elimination. Compare the cost of solving a linear system by computing and multiplying by A^{-1} to the cost of doing Gaussian elimination and two triangular solves.

3. Consider a parallelepiped in \mathbb{R}^3 whose sides are given by the columns of a 3-by-3 matrix A. Interpret LU factorization geometrically, thinking of Gauss transformations as shearing operations. Using the fact that shear transformations preserve volume, give a simple expression for the volume of the parallelepiped.