1 Broadening the Basin

All the methods we have so far discussed for solving nonlinear equations or optimization problems have the form

$$x_{k+1} = x_k + \alpha_k p_k$$

where α_k is a step size and p_k is a search direction. We have described a wide variety of methods for choosing the search directions p_k. We have also analyzed several of these methods (or at least pointed to their analysis) under the assumption that the step sizes were chosen to be $\alpha_k = 1$ (or, in our analysis of gradient descent, $\alpha_k = \alpha$ some constant). But so far, our analyses have all come with the caveat that convergence is only assured for initial guesses that are “good enough.” We call the set of initial guesses for which a nonlinear solver or optimizer converges to a given solution x_* the basin of convergence for x_*. In a previous lecture, we have already discussed some features that make the basin of convergence large or small for Newton and modified Newton iterations. Today we begin our discussion of globalization methods that allow us to guarantee convergence even if we lack a good enough initial guess to make our unguarded iterations converge.

In our discussion today, it will be convenient to focus on globalization by line search methods that make intelligent, adaptive choices of the step size. Informally, these methods work with any “reasonable” method for choosing search directions p_k (which should at least be descent directions). An exact line search method seeks to minimize $g(\alpha) = \phi(x_k + \alpha p_k)$ by a one-dimensional optimization; but it turns out that the work required for exact line search usually does not justify the benefit. Instead, we consider inexact line search methods that choose step sizes α_k such that the methods:

- Make significant progress in the downhill direction (α_k not too small).
- But don’t step so far they go back uphill (α_k not too big).

We need to tighten and formalize these conditions a little bit in order to obtain formal convergence results, but this is the right intuition.
2 A series of unfortunate examples

In order to illustrate the conditions we will require – and the limits of our approach – we will first consider three illustrative examples.

2.1 The long march to infinity

Consider the one-dimensional objective function

$$\phi(x) = x \tan^{-1}(x) - \frac{1}{2} \log(1 + x^2).$$

The first and second derivatives of ϕ are

$$\phi'(x) = \tan^{-1}(x)$$

$$\phi''(x) = \frac{1}{1 + x^2}.$$

This is a convex function with a unique global minimum $\phi(0) = 0$. To find this minimum, we might first consider Newton’s iteration:

$$x_{k+1} = x_k - \frac{\phi'(x_k)}{\phi''(x_k)} = x_k - \left(1 + x_k^2\right) \tan^{-1}(x_k).$$

The Newton step is always in a descent direction, and the iteration converges for $|x_0| \leq \xi \approx 1.3917$; here ξ is the solution to the “anti-fixed-point” equation

$$-\xi = \xi - (1 + \xi^2) \tan^{-1}(\xi).$$

For any $|x_0| > \xi$, the iterates blow up, alternating between positive and negative numbers of increasingly wild magnitudes. The Newton step always goes in the right direction, but it goes too far.

A simple fix, which works in this case, is to check for progress and cut the step in half if it is not obtained; that is, we take

$$x_{k+1} = x_k - \alpha_k \frac{\phi'(x_k)}{\phi''(x_k)}$$

where α_k is the first value 2^{-j} for $j = 0, 1, \ldots$ that guarantees $\phi(x_{k+1}) < \phi(x_k)$. The corresponding code is shown in Figure 1.
% Set up function, gradient, and Hessian
phi = @(x) x.*atan(x) - log(1+x.^2)/2;
g = @(x) atan(x);
H = @(x) 1./(1+x.^2);

% Compute initial guess and function value
x = 2
phik = phi(x);

% Newton iteration with naive line search
for k = 1:10
 % Try out a Newton step
 p = -g(x)/H(x);
a = 1;
 phip = phi(x+p);
 % While the objective is too big, cut the step size
 while phip > phik
 a = a/2;
 phip = phi(x+a*p);
 end
 % Update x and reference objective
 x = x + a*p
 phik = phip;
end

Figure 1: 1D Newton optimizer with a naive backtracking line search.
Figure 2: Oscillation of Newton for $\phi(x) = 19x^2 - 4x^4 + \frac{7}{9}x^6$. The iterates jump back and forth between just greater than 1 and just less than -1 (top), and the objective values are monotonically decreasing toward $\phi(1) \approx 15.7778$ (bottom).
2.2 Obscure oscillation

As a second example, consider minimizing the polynomial

\[\phi(x) = 19x^2 - 4x^4 + \frac{7}{9}x^6. \]

The relevant derivatives are

\[\phi'(x) = 38x - 16x^3 + \frac{14}{3}x^5 \]
\[\phi''(x) = 38 - 48x^2 + \frac{70}{3}x^4. \]

The function is convex — the minimum value of \(\phi''(x) \) is about 13.3 — and there is a unique global minimum at zero. So what happens if we start Newton’s iteration at \(x_0 = 1.01 \)?

The progress of the iteration is shown in Figure 2. If we look only at the objective values, we seem to be making progress; each successive iterate is smaller than the preceding one. But the values of \(\phi \) are not converging toward zero, but toward \(\phi(\pm 1) = 142/9 \approx 15.778! \) The iterates themselves slosh back and forth, converging to a limit cycle where the iteration cycles between 1 and \(-1\). Furthermore, while this polynomial was carefully chosen, the qualitative cycling behavior is robust to small perturbations to the starting guess and to the polynomial coefficients. Though it appears to be making progress, the iteration is well and truly stuck.

The moral is that decreasing the function value from step to step is not sufficient. Though just insisting on a decrease in the objective function from step to step will give convergence for many problems, we need a stronger condition to give any sort of guarantee. But this, too, can be fixed.

2.3 The planes of despair

As a final example, consider the function

\[\phi(x) = \exp(-x^2/2) - \exp(-x^4/4), \]

plotted in Figure 3. This function has two global minima close at around \(\pm 0.88749 \) separated by a local maximum at zero, and two global maximum around \(\pm 1.8539 \). But if we always move in a descent direction, then any iterate that lands outside the interval \([-1.8539, 1.8539]\) dooms the iteration to
never enter that interval, and hence never find either of the minima. Instead, most solvers are likely to march off toward infinity until the function is flat enough that the solver decides it has converged and terminates. This is the type of problem that we do \textit{not} solve with globalization, and illustrates why good initial guesses remain important even with globalization.

3 Backtracking search and the Armijo rule

The idea of a backtracking search is to try successively shorter steps until reaching one that makes “good enough” progress. The step sizes have the form $\alpha \rho^j$ for $j = 0, 1, 2, \ldots$ where α is the default step size and $\rho < 1$ is a backtracking factor (often chosen to be 0.5). As we saw in our examples, we need a more stringent acceptance condition than just a decrease in the function value — otherwise, we might get unlucky and end up converging to a limit cycle. That stronger condition is known as the \textit{sufficient decrease} or the \textit{Armijo rule}. For optimization, this condition takes the form

$$\phi(x_k + \alpha p_k) \leq \phi(x_k) + c_1 \alpha \phi'(x_k) p_k$$

for some $c_1 \in (0, 1)$. Assuming that p_k is a descent direction, this condition can always be satisfied for small enough α, as Taylor expansion gives

$$\phi(x_k + \alpha p_k) = \phi(x_k) + \alpha \phi'(x_k) p_k + o(\alpha).$$

In practice, it is fine to choose c_1 to be quite small; the value of 10^{-4} is suggested by several authors. This condition can always be satisfied for small
enough choices of α. Such a line search algorithm looks much the same as
the naive line search that we described earlier, but with a more complicated
termination condition on the line search loop:

```plaintext
% Given a full step $p$ and current value $p_k$, current gradient $g_k$
a = aref;
phip = phi(x+a*p);
slope = gk'*p;

% Reduce the step until the Armijo condition is satisfied
while phip > phik + c1*a*slope
  a = rho*a;
  phip = phi(x+a*p);
end

% Update x and reference objective
x = x + a*p;
phik = phip;
```

The contraction factor ρ may be chosen a priori (e.g. $\rho = 0.5$), or it may be
chosen dynamically from some range $[\rho_{\text{min}}, \rho_{\text{max}}]$ where $0 < \rho_{\text{min}} < \rho_{\text{max}} < 1$.

4 The curvature condition

Backtracking line search is not the only way to choose the step length. For
example, one can also use methods based on a polynomial approximation to
the objective function along the ray defined by the search direction, and this
may be a better choice for non-Newton. In this case, we need to guard not
only against steps that are too long, but also steps that are too short. To do
this, it is helpful to enforce the curvature condition

$$
\frac{\partial \phi}{\partial p_k}(x_k + \alpha p_k) \geq c_2 \frac{\partial \phi}{\partial p_k}(x_k)
$$

for some $0 < c_1 < c_2 < 1$. The curvature condition simply says that if the
slope in the p_k direction at a proposed new point is almost the same as the
slope at the starting point, then we should keep going downhill! Together,
the sufficient descent condition and the curvature conditions are known as
the Wolfe conditions. Assuming ϕ is at least continuously differentiable and
that it is bounded from below along the ray $x_k + \alpha p_k$, it is always possible
to choose a step size α that satisfies the Wolfe conditions.
5 Armijo and nonlinear equations

While the Armijo rule evolved in optimization theory, the same concept of sufficient decrease of the function applies in nonlinear equation solving. To measure progress, we typically monitor the residual norm \(\| f(x) \| \). If \(p_k = -f'(x_k)^{-1}f(x_k) \) is the Newton direction from a point \(x_k \), a linear model of \(f \) predicts that

\[
\| f(x_k + \alpha p_k) \| \approx \| f(x_k) + \alpha f'(x_k)p_k \| = (1 - \alpha)\| f(x_k) \|;
\]

that is, the predicted decrease is by \(\alpha \| f(x_k) \| \). We insist on some fraction of the predicted decrease as a sufficient decrease to accept a step, yielding the condition

\[
\| f(x_k + \alpha p_k) \| \leq (1 - c_1\alpha)\| f(x_k) \|.
\]

We don’t have to take a Newton step to use this criteria; it is sufficient that the step satisfy an inexact Newton criterion such as

\[
\| f(x_k) + f'(x_k)p_k \| \leq \eta \| f(x_k) \|
\]

for some \(\eta < 1 \).

6 Global convergence

In general, if we seek to minimize an objective \(\phi \) that is \(C^1 \) with a Lipschitz first derivative and

- We use one of the line search algorithms sketched above (backtracking line search or line search satisfying the Wolfe conditions),
- The steps \(p_k \) are gradient related (\(\| p_k \| \geq m\| \nabla \phi(x_k) \| \) for all \(k \) - they don’t shrink too fast),
- The angles between \(p_k \) and \(-\nabla \phi(x_k) \) are acute and uniformly bounded away from ninety degrees.
- The iterates are bounded (it is sufficient that the set of points less than \(\phi(x_0) \) is bounded),
then we are guaranteed global convergence to a stationary point. Of course, even with all these conditions, we might converge to a saddle or a local minimizer that is different from the solution we hoped to find; and we are not guaranteed fast convergence. So the choice of initial guess, and the choice of iterative methods, still matters a great deal. Nonetheless, the point remains that an appropriately chosen line search can help improve the convergence behavior of the methods we have described so far by quite a bit.

We have not described the full range of possible line searches. In addition to algorithms that inexacty minimize the objective with respect to the line search parameter, there has also been some work on non-monotone line search algorithms that allow increases in the function values, as long as progress is made in some more averaged sense (e.g. the new point has an objective function value smaller than the maximum objective function for the past few points). This is useful for improving convergence speed on some hard problems, and is useful in the context of particular classes of methods such as spectral projected gradient (about which we will say nothing in this class other than the name).